The derived category of (commutative) DG
algebras
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Notation
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@ BB — category; Ob B — objects; Morg (M, N) — morphisms
e “DG" = “differential graded”
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Outline

© The category of complexes DGM (K)
Q@ (DGM (K),®) as a closed symmetric monoidal category
© DG algebras and DG modules

Q The category DGM (A) and the functors — ®4 —
Homa (—, —)

© The homotopy category H (A)
@ The derived category D (A)

@ The derived versions of — ®4 — and Homp (—, —)
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1. The category of complexes DGM (K)

1.1. Objects and morphisms in DGM (K)

The objects of DGM (K) are complexes of K-modules, i.e.
sequences of homomorphisms of K-modules

oM oM

M= ... —s M., —5M—M_,— -

such that 8,-"/’ o 8,-"_{1 = 0 for all /.



1. The category of complexes DGM (K)

1.1. Objects and morphisms in DGM (K)

The objects of DGM (K) are complexes of K-modules, i.e.
sequences of homomorphisms of K-modules

oM oM
M = i+t i
s — Migg M; M_{—---

such that 8,-"/’ o 8,-"_{1 = 0 for all /.

We write m € M if m € My for a certain d. In this case we say
that m has degree d, and write |m| = d.



A morphism 8 : M — N in DGM (K) is a family of

homomorphisms of KK-modules

B=(Bi: Mi— Nj)icy

such that the diagram

8’_/\11 8IM
Mii1 M; My —— -
lﬁﬁl lﬁi lﬁil
o o
Nipp —=— N; N;—1

commutes.



A morphism 8 : M — N in DGM (K) is a family of
homomorphisms of KK-modules

B=(Bi: Mi— Nj)icy

such that the diagram

8i/‘#/’»l 8IM
Mii1 M; My —— -
lﬁﬁl lﬁi lﬁil
o o
Nipp —=— N; N;—1

commutes.

The category DGM (K) is a K-category which is complete and
cocomplete.



1.2. Some functors and further notions

Given a complex M

M aM

8! !
M= ... —5 M, —5 M



1.2. Some functors and further notions

Given a complex M

M aM

0! !
i+1 i
M= .. — Mi+1 M,' M,',l

we may consider a new complex M’

M? = S My —2 M2 M ——



Define to be the full subcategory of DGM (K) whose
objects are the complexes M such that 9™ = 0.
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Define to be the full subcategory of DGM (K) whose
objects are the complexes M such that 9™ = 0.

Then (—)" defines a forgetful functor

(=)*: DGM (K) — GM (K)
M —s M,
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We may also consider the autofunctor >
Y : DGM (K) — DGM (K)
which assigns a complex ¥ (M) to each complex M, where

(Z(M)); = Miy,
ortM — M.

] I—
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We may also consider the autofunctor >
Y : DGM (K) — DGM (K)
which assigns a complex ¥ (M) to each complex M, where

(Z(M)); = Miy,
ortM — M.

] I—

The functors ¥ and (—)? commute with each other.

8/46



Let M and N be complexes.



Let M and N be complexes.

We call 5 a of degree d from M to N if
B e MongM(K) (M,Z_d (N))



Let M and N be complexes.

We call g a of degree d from M to N if
B e MongM(K) (M,Z_d (N))
We call 8 a of degree d from M to N if B is a

chain map of degree d from M? to N°.
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Let M and N be complexes.

We call g a of degree d from M to N if

B e MongM(K) (M,Z_d (N))

We call 8 a of degree d from M to N if B is a
chain map of degree d from M? to Ni. Write and define

_ CSiNg)
i:|£z Morg augeey ((M*, =)

9/46



1.3. A tensor product in DGM (K)

A graded set is a family of sets (Xj);cy.
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1.3. A tensor product in DGM (K)
A graded set is a family of sets (X);cz.

A homogeneous map of graded sets, 8 : X — Y/, is a family of

maps
B=(Bi: Xi — Yitd)icz >

for some fixed d.

If X and Y are graded sets their graded product is the graded set

XRYy=| || XixY)
i itj=h heZ
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Let L, M and N be in ObGgM (K).
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Let L, M and N be in ObGM (K).
A homogeneous map ¥ : LK M — N is called K-bilinear if, for

every i,j € Zwith i+j=h, I,I"e Lj, mym" € Mj and k € K,
there are identities
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Let L, M and N be in ObGM (K).

A homogeneous map ¢ : LK M — N is called if, for
every i,j € Zwith i+j=h, I,I"e Lj, mym" € Mj and k € K,
there are identities

Y (14 1',m) =¥ (1, m) + ¢ (I', m)
Yp (1, m+m') = (I, m) + ¢y (1, M),
Y (kI, m) = oy, (1, km) .
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Let L, M and N be in Ob GM (K).
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Let L, M and N be in ObGM (K).

Denote by [ © M the graded module over K with h*" component

(LeaM),= P (LiexM).
ijiitj=h

Universal property of ®

Let i : LM — N be a homogeneous K-bilinear map of graded
sets of degree d. There exists a unique homomorphism of
complexes

VLM —N
such that:
° [¢|=d,
° 1/1;,(/®Km):¢h(/,m), forlcLi, me M;, i+j=h.




Let M, M’, L and L’ be in ObGM (K) and consider the
homomorphisms of complexes A : L — L' and y: M — M’.
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Let M, M’, L and L’ be in ObGM (K) and consider the

homomorphisms of complexes A : L — L' and y: M — M’.

By the universal property of ® there is a homomorphism
A@u: LM —L'e M
of degree |A| + |p, satisfying

(A ®p) (1o m) = (=1)HVIA(1) @ u(m).
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In particular, consider the homomorphism of degree —1 given by

=0t @idy +id; @M Lo M — Lo M.
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In particular, consider the homomorphism of degree —1 given by

=0t @idy +id; @M Lo M — Lo M.

We have (8L®M)2 =0.
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In particular, consider the homomorphism of degree —1 given by

OFM = ot @idpy +id, @M Lo M —s L M.

We have (8L®M)2 =0.

Definition

Let L and N be complexes. The tensor product L ® M is the
complex given by the graded module L? @ M?, endowed with the
differential OL®M.
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The tensor product ® defines a functor

— ® — : DGM (K) x DGM (K) — DGM (K)

with nice properties.©
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2. DGM (K) as a closed symmetric monoidal category

2.1. Monoidal categories

A monoidal category B = (B,—0—, E,a, A, p) is a category B
endowed with a functor

—0—: B x B — B (the tensor product),
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2. DGM (K) as a closed symmetric monoidal category

2.1. Monoidal categories

A monoidal category B = (B, —0—, E, a, \, p) is a category B
endowed with a functor
—0O—: B x B — B (the tensor product),

an object E € Ob B (the tensor unit), and three natural
isomorphisms,

a: (—0-)o ((-0O-) xidg) — (—0O-) o (idg x(—0O-))

(the associator),
A (=0—-) o (E xidg) — idg (the left unitor),
p:(—0-)o(idg xE) — idg (the right unitor),

satisfying properties 1 and 2.
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@ The pentagonal diagram commutes for all A,B,C,D € ObB

(AOB)O(COD)

AD(BO(COD)) ((AOB)OC)OD -

Wfscu ABCV

AD((BOC)OD) feenco) (AO(BOC))OD
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@ For A, B € Ob B the triangle identity holds

QAE,B

A (ECIB) (ADE)UB

i@% Ads

AOB

18/46



The category DGM (K) is a monoidal category with
@ tensor product — ® —,
@ tensor unit K,

@ «, A and p as expected.

19/46



2.2. Symmetric monoidal categories

A monoidal category B = (B, —0—, E, o, A, p) is symmetric if it is
endowed with a natural isomorphism -, called the braiding

73 (-0-) — (~0-)o (= x =)

satisfying conditions 1, 2 and 3.
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@ Y(a.B) ©V(B,4) = idaos, for every A, B € ObB.
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@ Y(a.B) ©V(B,4) = idaos, for every A, B € ObB.

@ For every A € Ob B3, there is a commutative diagram

AOE N4E) ECA

R

A
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@ Y(a.B) ©V(B,4) = idaos, for every A, B € ObB.

@ For every A € Ob B3, there is a commutative diagram

AOE N4E) ECA

R

© For every A, B, C € Ob B3, there is a commutative diagram

Y(AOB,C)

AO(BOC) 2429 (a0B)oc 229 co(ADB)

ida D’Y(s,c)l l‘)‘(c A,B)

AC(COB) 2429 (anic) 0B 925 coia) B
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The monoidal category
DGM (K) = (DGM (K),— @ —, K, a, A, p) is symmetric,
with braiding

’Y(L,M)L®M—>M®L
lom— (=D)IMme 1,

for L, M € ObDGA (K).
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2.3. Closed symmetric monoidal categories

A symmetric monoidal category B is closed if for all A € Ob B,
each functor
—-UA:B— B

has a right adjoint
[A,—]:B— B.
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The functor
—® M : DGM (K) x DGM (K) — DGM (K)

has a right adjoint, i.e. DGM (K) is a closed symmetric
monoidal category.
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Let u: M — M and v : N — N’ be homomorphisms of
complexes.
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Let u: M — M and v : N — N’ be homomorphisms of
complexes.

Recall: Hom (M, N) and Hom (M’ N') are graded modules over K.
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Let u: M — M and v : N — N’ be homomorphisms of
complexes.

Recall: Hom (M, N) and Hom (M’ N') are graded modules over K.

And
Hom (p,v) : Hom (M, N) — Hom (M', N')

(Hom (1,1)) (3) = (=)Ao g o g

is a homomorphism of graded modules over K.
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Let u: M — M and v : N — N’ be homomorphisms of
complexes.

Recall: Hom (M, N) and Hom (M’ N') are graded modules over K.

And
Hom (p,v) : Hom (M, N) — Hom (M', N')

= (=)D 6 B oy

is a homomorphism of graded modules over K.

The graded module Hom (M, N), together with
oHem(M:N) — Hom (idM,8N> — Hom (8M,idN) ,

becomes a complex.
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Indeed,
Hom (—, —) : DGM (K) °? x DGM (K) — DGM (K),

defines a functor,
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Indeed,
Hom (—, —) : DGM (K) °? x DGM (K) — DGM (K),
defines a functor, and there is a natural isomorphism

Morpg k) (L ® M, N) = Morpg (k) (L, Hom (M, N)).
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3. DG algebras and DG modules

3.1. Monoids / DG algebras

A monoid in a monoidal category B = (B,, E,a, A, p) is an
object A € Ob B, together with two morphisms
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3. DG algebras and DG modules

3.1. Monoids / DG algebras

A monoid in a monoidal category B = (B,, E,a, A, p) is an
object A € Ob B, together with two morphisms

w: AOA — A (multiplication),

n: E— A (unit),

such that diagrams 1 and 2 commute.
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AQ(ADIA) 22428 (ama)y oA 229 aoa

a0 l

ACA K A
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AQ(ADIA) 22428 (ama)y oA 229 aoa

a0 l

ACA K A

EOA 29 aga &40 anE

b

A
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If B is a symmetric monoidal category (with braiding «y), then a
monoid A = (A, i, n) in B is said to be if the diagram

ACA 2 ACA

SOF

A

commutes.

29/46



If B is a symmetric monoidal category (with braiding «y), then a
monoid A = (A, i, n) in B is said to be if the diagram

ACA 2 ACA

SOF

A

commutes.

Given a monoid A = (A, i, ) we may form the
A%P = (A, o y(a,a),1)-
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If B is a symmetric monoidal category (with braiding «y), then a
monoid A = (A, i, n) in B is said to be commutative if the diagram

ACA 2 ACA

!

A

commutes.

Given a monoid A = (A, u,n) we may form the opposite monoid
A%P = (Ao Y(A,A)» 7).

A commutative = A = A°P
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Definition
Q A complex Ain DGM (K) is called a DG algebra if it is a
monoid in (DGM (K),— @ —, K, o, A, p).
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Definition
@ A complex A in DGM (K) is called a DG algebra if it is a
monoid in (DGM (K), — ® —, K, a, A, p).

@ A DG algebra A is said to be commutative if it is
commutative monoid in (DGM (K),— @ —, K, o, A, p) with
respect to the braiding ~.
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3.2. Modules / DG modules

Let B = (B,0, E,, A, p) be a monoidal category. A (left) module

B over a monoid A = (A, i, n) is an object B in B, together with a
morphism

v:AOOB — B
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3.2. Modules / DG modules

Let B = (B,0, E,, A, p) be a monoidal category. A (left) module

B over a monoid A = (A, i, n) is an object B in B, together with a
morphism

v:AOB — B
such that the diagrams

AD(ACIB) 2% (amay OB #2598 A

aam | l

AUB - B
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3.2. Modules / DG modules

Let B = (B,0, E,, A, p) be a monoidal category. A (left) module

B over a monoid A = (A, i, n) is an object B in B, together with a
morphism

v:AOB — B
such that the diagrams

AD(ACIB) 2% (amay OB #2598 A

aam | l

AUB - B

commute.
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Right modules over a monoid are defined symmetrically.
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Right modules over a monoid are defined symmetrically.

Let B be a symmetric monoidal category, with braiding v, and let
A be a monoid.
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Right modules over a monoid are defined symmetrically.

Let B be a symmetric monoidal category, with braiding v, and let
A be a monoid.

B = (B,v) is a left module over A= (A, i, )
)

B'=(B,vo ’Y(B,A)) is a right module over A°P
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Let A= (A, u,n) be a monoid in a monoidal category
B=(B,0,E, a,\p).
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Let A= (A, u,n) be a monoid in a monoidal category
B=(B,0,E, a,\p).

Consider 5 : B — B’, morphism in B, with B = (B,v),
B’ = (B',v') modules over A.
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Let A= (A, u,n) be a monoid in a monoidal category
B=(B,0,E, a,\p).

Consider 5 : B — B’, morphism in B, with B = (B,v),
B’ = (B',v') modules over A.

We call 5 a over A if the diagram

ACB 228, anp

B—" ,p

commutes.
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Definition
Let A be a DG algebra.

@ A complex M in DGM (K) is a DG module over Aif M is a
module over the monoid A in the monoidal category

DGM (K).
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Definition
Let A be a DG algebra.

@ A complex M in DGM (K) is a over Aif M is a
module over the monoid A in the monoidal category

DGM (K).

@ Let M and M are DG modules over A. A morphism
B:M— M in DGM (K) is a
over A if it is morphism of modules over the monoid A in the
monoidal category DGM (K).
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4. The category DGM (A) and the functors — ®4 —,
Homa (—, —)

Let A be a DG algebra.
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4. The category DGM (A) and the functors — ®4 —,
Homa (—, —)

Let A be a DG algebra.

The DG modules over A and the morphisms of DG mod-
ules over A form a subcategory of DGM (K): denote it by
DGM (A).
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4. The category DGM (A) and the functors — ®4 —,
Homa (—, —)

Let A be a DG algebra.

The DG modules over A and the morphisms of DG mod-
ules over A form a subcategory of DGM (K): denote it by
DGM (A).

The category DGM (A) is a K-category which is complete
and cocomplete.
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4.1 The functor Homa (—, —)

Let M and N be DG modules over a DG algebra A.
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4.1 The functor Homa (—, —)

Let M and N be DG modules over a DG algebra A. We have
morphisms of DG algebras

oM : A— Hom (M, M),
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4.1 The functor Homa (—, —)

Let M and N be DG modules over a DG algebra A. We have
morphisms of DG algebras

oM : A— Hom (M, M),

oV : A— Hom (N, N).
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4.1 The functor Homa (—, —)

Let M and N be DG modules over a DG algebra A. We have
morphisms of DG algebras

oM : A— Hom (M, M),

oV : A— Hom (N, N).

Consider the morphisms of complexes

Hom (M, — M
£+ Hom (M, N) 2 MM o (Hom (M, M) , Hom (M, NS ™2™ MR (A, Hom (M, ) -
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4.1 The functor Homa (—, —)

Let M and N be DG modules over a DG algebra A. We have
morphisms of DG algebras

oM : A— Hom (M, M),

oV : A— Hom (N, N).

Consider the morphisms of complexes

Hom (M, — M
£+ Hom (M, N) 2 MM o (Hom (M, M) , Hom (M, NS ™2™ MR (A, Hom (M, ) -
Hom (—, N),,

N om (qﬁN,Hom (M, N}z{]
g : Hom (M, N) —————= Hom (Hom (N, N) ,Hom (M, N)) ————— Hom (A, Hom (M, N)) -
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Define Hom » (M. V) to be the equaliser of the morphisms f and g.
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Define Hom » (M. V) to be the equaliser of the morphisms f and g.

The functor Hom (—, —) restricts to a functor

Homa (—, —) : DGM (A) % x DGM (A) —s DGM (K).
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4.2 The functor — ®4 —

Let L and M be DG modules over the DG algebras A° and A,
respectively, with actions

vhiAg L — L,
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4.2 The functor — ®4 —

Let L and M be DG modules over the DG algebras A° and A,
respectively, with actions

vhiAg L — L,

MoA M — M.
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4.2 The functor — ®4 —

Let L and M be DG modules over the DG algebras A° and A,
respectively, with actions

vhiAg L — L,
WMiA® M — M.
Consider the morphisms of complexes

L
frALoMZEM i om
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4.2 The functor — ®4 —

Let L and M be DG modules over the DG algebras A° and A,

respectively, with actions
vhiAg L — L,
WMiAQM — M

Consider the morphisms of complexes

vbe M

fiAQLOM —— LM >

XM
g A LMY oA M

LM

— LM -
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Define to be the factor complex of L ® M which is the
coequaliser of the morphisms f and g.
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Define L ¢, M to be the factor complex of L ® M which is the
coequaliser of the morphisms f and g.

The functor — ® — induces a functor

— @4 — : DGM (AP) x DGM (A) —s DGM (K).

39/46



Let A be a commutative DG algebra.
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Let A be a commutative DG algebra.

If L and M are DG modules over A, we may consider the
complex
L®a M,

and this is a DG (left and a right) module over A.
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5. The homotopy category H (A)
Let A be a DG algebra and

B:M— N

a morphisms of DG modules over A.
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5. The homotopy category H (A)

Let A be a DG algebra and
B:M— N
a morphisms of DG modules over A.
Say that (5 is null homotopic if
B=0"ox+xod",

for some x € (Homa (M, N));.
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The homotopy category of a DG algebra A, denoted by H (A) is
the category defined by:
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The homotopy category of a DG algebra A, denoted by H (A) is
the category defined by:

o Ob? (A) = ObDGM (A),
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The homotopy category of a DG algebra A, denoted by H (A) is
the category defined by:

o Ob? (A) = ObDGM (A),

o Morya) (M, N) = Morpgaay (M, N) / null homotopy.
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For every 8 : M — N, morphism of DG modules over a DG
algebra A, we may consider a complex

e £ 2]
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For every 8 : M — N, morphism of DG modules over a DG
algebra A, we may consider a complex

e £ 2]

and a short exact sequence

0 N —— Cone 8 —— M 0.
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The category H (A) is triangulated, with shift functor ¥ and
with distinguished triangles the triangles in H (A) isomorphic
(in H (A)!) to

M—F s N—" 3 Conef —3FTM >

for 5 morphism in DGM (A).
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6. The derived category D (A)

Given a complex M, one defines Z (M), B(M) and H (M) as usual.
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6. The derived category D (A)

Given a complex M, one defines Z (M), B(M) and H (M) as usual.

For A DG algebra, the homology defines a functor

H : DGM (A) — GM (H (A)).

A morphism 3: M — N in DGM (A) such that H (/) is an
isomorphism is called a quasiisomorphism.
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Quasiisomorphisms are well defined in # (A), and the set of
morphsims

{quasiisomorphisms} C {morphisms in H (A)}

is a multiplicative system in H (A).
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Quasiisomorphisms are well defined in # (A), and the set of
morphsims

{quasiisomorphisms} C {morphisms in H (A)}
is a multiplicative system in H (A).
So we may localise H (A) with respect to {quasiisomorphisms}.

Then D (A) is this localisation.

D (A) is a Verdier localisation of H (A).
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