# The derived category of (commutative) DG algebras

Teresa Conde

20 June, 2015

## Notation

- $\bullet~\mathbb{K}$  commutative ring with identity
- $\mathcal{B}$  category; Ob  $\mathcal{B}$  objects; Mor<sub> $\mathcal{B}$ </sub> (M, N) morphisms
- "DG" = "differential graded"

## Notation

- $\bullet~\mathbb{K}$  commutative ring with identity
- $\mathcal{B}$  category; Ob  $\mathcal{B}$  objects; Mor<sub> $\mathcal{B}$ </sub> (M, N) morphisms

• "DG" = "differential graded"

## Notation

- $\bullet~\mathbb{K}$  commutative ring with identity
- $\mathcal{B}$  category; Ob  $\mathcal{B}$  objects; Mor<sub> $\mathcal{B}$ </sub> (M, N) morphisms
- "DG" = "differential graded"

- $\textbf{ I he category of complexes } \mathcal{DGM}\left(\mathbb{K}\right)$
- $@~\left(\mathcal{DGM}\left(\mathbb{K}
  ight),
  ight)$  as a closed symmetric monoidal category
- OG algebras and DG modules
- The category DGM (A) and the functors − ⊗<sub>A</sub> −, Hom<sub>A</sub> (−, −)
- The homotopy category  $\mathcal{H}(A)$
- The derived category  $\mathcal{D}(A)$
- The derived versions of  $\otimes_A -$  and  $Hom_A(-, -)$

## $\textbf{ I he category of complexes } \mathcal{DGM}\left(\mathbb{K}\right)$

- (2)  $(\mathcal{DGM}(\mathbb{K}), \otimes)$  as a closed symmetric monoidal category
- OG algebras and DG modules
- The category  $\mathcal{DGM}(A)$  and the functors  $-\otimes_A -$ , Hom<sub>A</sub>(-,-)
- The homotopy category  $\mathcal{H}(A)$
- The derived category  $\mathcal{D}(A)$
- The derived versions of  $-\otimes_A -$  and  $\operatorname{Hom}_A(-,-)$

- $\textcircled{O} \left(\mathcal{DGM}\left(\mathbb{K}\right),\otimes\right) \text{ as a closed symmetric monoidal category}$
- In DG algebras and DG modules
- The category  $\mathcal{DGM}(A)$  and the functors  $-\otimes_A -$ , Hom<sub>A</sub>(-,-)
- The homotopy category  $\mathcal{H}(A)$
- The derived category  $\mathcal{D}(A)$
- The derived versions of  $-\otimes_A -$  and  $\operatorname{Hom}_A(-,-)$

- 2  $(\mathcal{DGM}\left(\mathbb{K}
  ight),\otimes)$  as a closed symmetric monoidal category
- OG algebras and DG modules
- The category  $\mathcal{DGM}(A)$  and the functors  $-\otimes_A -$ , Hom<sub>A</sub>(-,-)
- **(a)** The homotopy category  $\mathcal{H}(A)$
- The derived category  $\mathcal{D}(A)$

• The derived versions of  $-\otimes_A -$  and  $Hom_A(-,-)$ 

- 2  $(\mathcal{DGM}(\mathbb{K}),\otimes)$  as a closed symmetric monoidal category
- OG algebras and DG modules
- The category  $\mathcal{DGM}(A)$  and the functors  $-\otimes_A -$ , Hom<sub>A</sub>(-,-)
- The homotopy category  $\mathcal{H}(A)$
- The derived category  $\mathcal{D}(A)$

• The derived versions of  $- \otimes_A - \text{ and } \text{Hom}_A(-, -)$ 

- 2  $(\mathcal{DGM}(\mathbb{K}),\otimes)$  as a closed symmetric monoidal category
- OG algebras and DG modules
- The category  $\mathcal{DGM}(A)$  and the functors  $-\otimes_A -$ , Hom<sub>A</sub>(-,-)
- **(3)** The homotopy category  $\mathcal{H}(A)$
- (a) The derived category  $\mathcal{D}(A)$

**()** The derived versions of  $-\otimes_A - \text{ and } \text{Hom}_A(-,-)$ 

- 2  $(\mathcal{DGM}(\mathbb{K}),\otimes)$  as a closed symmetric monoidal category
- OG algebras and DG modules
- The category  $\mathcal{DGM}(A)$  and the functors  $-\otimes_A -$ , Hom<sub>A</sub>(-,-)
- **(3)** The homotopy category  $\mathcal{H}(A)$
- **()** The derived category  $\mathcal{D}(A)$

• The derived versions of  $-\otimes_A - \text{ and } \text{Hom}_A(-,-)$ 

- $@ \ \left( \mathcal{DGM} \left( \mathbb{K} \right), \otimes \right) \text{ as a closed symmetric monoidal category }$
- OG algebras and DG modules
- The category  $\mathcal{DGM}(A)$  and the functors  $-\otimes_A -$ , Hom<sub>A</sub>(-,-)
- **(3)** The homotopy category  $\mathcal{H}(A)$
- **(**) The derived category  $\mathcal{D}(A)$
- **②** The derived versions of  $-\otimes_A \text{and Hom}_A(-,-)$

## 1. The category of complexes $\mathcal{DGM}\left(\mathbb{K} ight)$

1.1. Objects and morphisms in  $\mathcal{DGM}\left(\mathbb{K}\right)$ 

The objects of  $\mathcal{DGM}(\mathbb{K})$  are *complexes of*  $\mathbb{K}$ *-modules*, i.e. sequences of homomorphisms of  $\mathbb{K}$ *-modules* 

$$M = \dots \longrightarrow M_{i+1} \xrightarrow{\partial_{i+1}^M} M_i \xrightarrow{\partial_i^M} M_{i-1} \longrightarrow \dots$$

such that  $\partial_i^M \circ \partial_{i+1}^M = 0$  for all *i*.

We write  $m \in M$  if  $m \in M_d$  for a certain d. In this case we say that m has degree d, and write |m| = d.

## 1. The category of complexes $\mathcal{DGM}\left(\mathbb{K} ight)$

1.1. Objects and morphisms in  $\mathcal{DGM}\left(\mathbb{K}\right)$ 

The objects of  $\mathcal{DGM}(\mathbb{K})$  are *complexes of*  $\mathbb{K}$ *-modules*, i.e. sequences of homomorphisms of  $\mathbb{K}$ *-modules* 

$$M = \dots \longrightarrow M_{i+1} \xrightarrow{\partial_{i+1}^M} M_i \xrightarrow{\partial_i^M} M_{i-1} \longrightarrow \dots$$

such that  $\partial_i^M \circ \partial_{i+1}^M = 0$  for all *i*.

We write  $m \in M$  if  $m \in M_d$  for a certain d. In this case we say that m has *degree* d, and write |m| = d.

A morphism  $\beta: M \longrightarrow N$  in  $\mathcal{DGM}(\mathbb{K})$  is a family of homomorphisms of  $\mathbb{K}$ -modules

$$\beta = (\beta_i : M_i \longrightarrow N_i)_{i \in \mathbb{Z}}$$

such that the diagram



#### commutes.

The category  $\mathcal{DGM}(\mathbb{K})$  is a  $\mathbb{K}$ -category which is complete and cocomplete.

A morphism  $\beta: M \longrightarrow N$  in  $\mathcal{DGM}(\mathbb{K})$  is a family of homomorphisms of  $\mathbb{K}$ -modules

$$\beta = (\beta_i : M_i \longrightarrow N_i)_{i \in \mathbb{Z}}$$

such that the diagram



commutes.

The category  $\mathcal{DGM}(\mathbb{K})$  is a  $\mathbb{K}$ -category which is complete and cocomplete.

#### 1.2. Some functors and further notions

Given a complex M

$$M = \dots \longrightarrow M_{i+1} \xrightarrow{\partial_{i+1}^M} M_i \xrightarrow{\partial_i^M} M_{i-1} \longrightarrow \dots ,$$

we may consider a new complex  $M^{\natural}$ 

$$M^{\natural} = \cdots \longrightarrow M_{i+1} \xrightarrow{0} M_i \xrightarrow{0} M_{i-1} \longrightarrow \cdots$$

#### 1.2. Some functors and further notions

Given a complex M

$$M = \dots \longrightarrow M_{i+1} \xrightarrow{\partial_{i+1}^M} M_i \xrightarrow{\partial_i^M} M_{i-1} \longrightarrow \dots ,$$

we may consider a new complex  $M^{\natural}$ 

$$M^{
atural} = \cdots \longrightarrow M_{i+1} \xrightarrow{0} M_i \xrightarrow{0} M_{i-1} \longrightarrow \cdots$$

Define  $\mathcal{GM}(\mathbb{K})$  to be the full subcategory of  $\mathcal{DGM}(\mathbb{K})$  whose objects are the complexes M such that  $\partial^M = 0$ .

Then  $(-)^{\natural}$  defines a forgetful functor

$$(-)^{\natural}: \mathcal{DGM}(\mathbb{K}) \longrightarrow \mathcal{GM}(\mathbb{K})$$
  
 $M \longmapsto M^{\natural}.$ 

Define  $\mathcal{GM}(\mathbb{K})$  to be the full subcategory of  $\mathcal{DGM}(\mathbb{K})$  whose objects are the complexes M such that  $\partial^M = 0$ .

Then  $(-)^{\natural}$  defines a forgetful functor

$$(-)^{\natural}: \mathcal{DGM}(\mathbb{K}) \longrightarrow \mathcal{GM}(\mathbb{K})$$
  
 $M \longmapsto M^{\natural}.$ 

We may also consider the autofunctor  $\boldsymbol{\Sigma}$ 

$$\Sigma:\mathcal{DGM}\left(\mathbb{K}
ight)\longrightarrow\mathcal{DGM}\left(\mathbb{K}
ight)$$

which assigns a complex  $\Sigma(M)$  to each complex M, where

$$(\Sigma(M))_i = M_{i-1},$$
  
 $\partial_i^{\Sigma(M)} = -\partial_{i-1}^M.$ 

The functors  $\Sigma$  and  $(-)^{\natural}$  commute with each other.

We may also consider the autofunctor  $\boldsymbol{\Sigma}$ 

$$\Sigma:\mathcal{DGM}\left(\mathbb{K}
ight)\longrightarrow\mathcal{DGM}\left(\mathbb{K}
ight)$$

which assigns a complex  $\Sigma(M)$  to each complex M, where

$$(\Sigma (M))_i = M_{i-1},$$
  
 $\partial_i^{\Sigma (M)} = -\partial_{i-1}^M.$ 

The functors  $\Sigma$  and  $(-)^{\natural}$  commute with each other.

We call  $\beta$  a *chain map* of degree *d* from *M* to *N* if  $\beta \in Mor_{\mathcal{DGM}(\mathbb{K})}(M, \Sigma^{-d}(N)).$ 

Hom 
$$(M, N) = \bigsqcup_{i: i \in \mathbb{Z}} \operatorname{Mor}_{\mathcal{GM}(\mathbb{K})} \left( M^{\natural}, \Sigma^{i} N^{\natural} \right).$$

We call  $\beta$  a *chain map* of degree *d* from *M* to *N* if  $\beta \in \text{Mor}_{\mathcal{DGM}(\mathbb{K})}(M, \Sigma^{-d}(N)).$ 

$$\operatorname{Hom}(M,N) = \bigsqcup_{i: i \in \mathbb{Z}} \operatorname{Mor}_{\mathcal{GM}(\mathbb{K})} \left( M^{\natural}, \Sigma^{i} N^{\natural} \right).$$

We call  $\beta$  a *chain map* of degree *d* from *M* to *N* if  $\beta \in Mor_{\mathcal{DGM}(\mathbb{K})}(M, \Sigma^{-d}(N))$ .

$$\operatorname{Hom}(M,N) = \bigsqcup_{i: i \in \mathbb{Z}} \operatorname{Mor}_{\mathcal{GM}(\mathbb{K})} \left( M^{\natural}, \Sigma^{i} N^{\natural} \right).$$

We call  $\beta$  a *chain map* of degree *d* from *M* to *N* if  $\beta \in Mor_{\mathcal{DGM}(\mathbb{K})}(M, \Sigma^{-d}(N)).$ 

$$\operatorname{Hom}(M,N) = \bigsqcup_{i: i \in \mathbb{Z}} \operatorname{Mor}_{\mathcal{GM}(\mathbb{K})} \left( M^{\natural}, \Sigma^{i} N^{\natural} \right).$$

#### 1.3. A tensor product in $\mathcal{DGM}\left(\mathbb{K}\right)$

## A graded set is a family of sets $(X_i)_{i \in \mathbb{Z}}$ .

A *homogeneous map* of graded sets,  $\beta : X \longrightarrow Y$ , is a family of maps

$$\beta = (\beta_i : X_i \longrightarrow Y_{i+d})_{i \in \mathbb{Z}},$$

for some fixed *d*.

If X and Y are graded sets their graded product is the graded set

$$X \boxtimes Y = \left(\bigsqcup_{i,j: i+j=h} (X_i \times Y_j)\right)_{h \in \mathbb{Z}}$$

1.3. A tensor product in  $\mathcal{DGM}\left(\mathbb{K}\right)$ 

A graded set is a family of sets  $(X_i)_{i \in \mathbb{Z}}$ .

A *homogeneous map* of graded sets,  $\beta : X \longrightarrow Y$ , is a family of maps

$$\beta = (\beta_i : X_i \longrightarrow Y_{i+d})_{i \in \mathbb{Z}},$$

for some fixed d.

If X and Y are graded sets their graded product is the graded set

$$X \boxtimes Y = \left(\bigsqcup_{i,j: i+j=h} (X_i \times Y_j)\right)_{h \in \mathbb{Z}}$$

1.3. A tensor product in  $\mathcal{DGM}\left(\mathbb{K}\right)$ 

A graded set is a family of sets  $(X_i)_{i \in \mathbb{Z}}$ .

A *homogeneous map* of graded sets,  $\beta : X \longrightarrow Y$ , is a family of maps

$$\beta = (\beta_i : X_i \longrightarrow Y_{i+d})_{i \in \mathbb{Z}},$$

for some fixed *d*.

If X and Y are graded sets their graded product is the graded set

$$X \boxtimes Y = \left(\bigsqcup_{i,j: i+j=h} (X_i \times Y_j)\right)_{h \in \mathbb{Z}}$$

٠

A homogeneous map  $\psi : L \boxtimes M \longrightarrow N$  is called  $\mathbb{K}$ -bilinear if, for every  $i, j \in \mathbb{Z}$  with i + j = h,  $l, l' \in L_i$ ,  $m, m' \in M_j$  and  $k \in \mathbb{K}$ , there are identities

$$\psi_{h}(l + l', m) = \psi_{h}(l, m) + \psi_{h}(l', m), \psi_{h}(l, m + m') = \psi_{h}(l, m) + \psi_{h}(l, m'), \psi_{h}(kl, m) = \psi_{h}(l, km).$$

A homogeneous map  $\psi : L \boxtimes M \longrightarrow N$  is called  $\mathbb{K}$ -bilinear if, for every  $i, j \in \mathbb{Z}$  with i + j = h,  $l, l' \in L_i$ ,  $m, m' \in M_j$  and  $k \in \mathbb{K}$ , there are identities

$$\psi_{h}(l + l', m) = \psi_{h}(l, m) + \psi_{h}(l', m), \psi_{h}(l, m + m') = \psi_{h}(l, m) + \psi_{h}(l, m'), \psi_{h}(kl, m) = \psi_{h}(l, km).$$

A homogeneous map  $\psi : L \boxtimes M \longrightarrow N$  is called  $\mathbb{K}$ -bilinear if, for every  $i, j \in \mathbb{Z}$  with i + j = h,  $l, l' \in L_i$ ,  $m, m' \in M_j$  and  $k \in \mathbb{K}$ , there are identities

$$\psi_{h}(l + l', m) = \psi_{h}(l, m) + \psi_{h}(l', m),$$
  

$$\psi_{h}(l, m + m') = \psi_{h}(l, m) + \psi_{h}(l, m'),$$
  

$$\psi_{h}(kl, m) = \psi_{h}(l, km).$$

Denote by  $L \otimes M$  the graded module over  $\mathbb{K}$  with  $h^{th}$  component

$$(L\otimes M)_h = \bigoplus_{i,j:\,i+j=h} (L_i\otimes_{\mathbb{K}} M_j).$$

#### Universal property of $\otimes$

Let  $\psi$  :  $L \boxtimes M \longrightarrow N$  be a homogeneous  $\mathbb{K}$ -bilinear map of graded sets of degree d. There exists a unique homomorphism of complexes

$$\psi':L\otimes M\longrightarrow N$$

such that:

- $|\psi'| = d$ ,
- $\psi'_h(l \otimes_{\mathbb{K}} m) = \psi_h(l, m)$ , for  $l \in L_i$ ,  $m \in M_j$ , i + j = h.

Denote by  $L \otimes M$  the graded module over  $\mathbb{K}$  with  $h^{th}$  component

$$(L\otimes M)_h = \bigoplus_{i,j:\,i+j=h} (L_i\otimes_{\mathbb{K}} M_j).$$

#### Universal property of $\otimes$

Let  $\psi : L \boxtimes M \longrightarrow N$  be a homogeneous  $\mathbb{K}$ -bilinear map of graded sets of degree d. There exists a unique homomorphism of complexes

$$\psi':L\otimes M\longrightarrow N$$

such that:

- $|\psi'| = d$ ,
- $\psi'_h(I \otimes_{\mathbb{K}} m) = \psi_h(I, m)$ , for  $I \in L_i$ ,  $m \in M_j$ , i + j = h.

Denote by  $L \otimes M$  the graded module over  $\mathbb{K}$  with  $h^{th}$  component

$$(L\otimes M)_h = \bigoplus_{i,j:\,i+j=h} (L_i\otimes_{\mathbb{K}} M_j).$$

#### Universal property of $\otimes$

Let  $\psi : L \boxtimes M \longrightarrow N$  be a homogeneous  $\mathbb{K}$ -bilinear map of graded sets of degree d. There exists a unique homomorphism of complexes

$$\psi': L \otimes M \longrightarrow N$$

such that:

•  $|\psi'| = d$ ,

•  $\psi_h'(l\otimes_{\mathbb{K}} m)=\psi_h(l,m)$ , for  $l\in L_i$ ,  $m\in M_j$ , i+j=h.

Denote by  $L \otimes M$  the graded module over  $\mathbb{K}$  with  $h^{th}$  component

$$(L\otimes M)_h = \bigoplus_{i,j:\,i+j=h} (L_i\otimes_{\mathbb{K}} M_j).$$

#### Universal property of $\otimes$

Let  $\psi : L \boxtimes M \longrightarrow N$  be a homogeneous  $\mathbb{K}$ -bilinear map of graded sets of degree d. There exists a unique homomorphism of complexes

$$\psi': L \otimes M \longrightarrow N$$

such that:

•  $|\psi'| = d$ ,

•  $\psi'_h(l \otimes_{\mathbb{K}} m) = \psi_h(l, m)$ , for  $l \in L_i$ ,  $m \in M_j$ , i + j = h.
Let L, M and N be in  $Ob \mathcal{GM}(\mathbb{K})$ .

Denote by  $L \otimes M$  the graded module over  $\mathbb{K}$  with  $h^{th}$  component

$$(L\otimes M)_h = \bigoplus_{i,j:\,i+j=h} (L_i\otimes_{\mathbb{K}} M_j).$$

### Universal property of $\otimes$

Let  $\psi : L \boxtimes M \longrightarrow N$  be a homogeneous  $\mathbb{K}$ -bilinear map of graded sets of degree d. There exists a unique homomorphism of complexes

$$\psi': L \otimes M \longrightarrow N$$

such that:

• 
$$|\psi'| = d$$
,

•  $\psi'_h(I \otimes_{\mathbb{K}} m) = \psi_h(I, m)$ , for  $I \in L_i$ ,  $m \in M_j$ , i + j = h.

Let M, M', L and L' be in  $Ob \mathcal{GM}(\mathbb{K})$  and consider the homomorphisms of complexes  $\lambda : L \longrightarrow L'$  and  $\mu : M \longrightarrow M'$ .

By the universal property of  $\otimes$  there is a homomorphism

$$\lambda \otimes \mu : L \otimes M \longrightarrow L' \otimes M'$$

of degree  $|\lambda| + |\mu|$ , satisfying

$$(\lambda \otimes \mu) (I \otimes m) = (-1)^{|\mu||I|} \lambda(I) \otimes \mu(m).$$

Let M, M', L and L' be in  $Ob \mathcal{GM}(\mathbb{K})$  and consider the homomorphisms of complexes  $\lambda : L \longrightarrow L'$  and  $\mu : M \longrightarrow M'$ .

By the universal property of  $\otimes$  there is a homomorphism

$$\lambda \otimes \mu : L \otimes M \longrightarrow L' \otimes M'$$

of degree  $|\lambda| + |\mu|$ , satisfying

$$(\lambda \otimes \mu) (I \otimes m) = (-1)^{|\mu||I|} \lambda(I) \otimes \mu(m).$$

### In particular, consider the homomorphism of degree -1 given by

$$\partial^{L\otimes M} = \partial^L \otimes \mathrm{id}_M + \mathrm{id}_L \otimes \partial^M : L \otimes M \longrightarrow L \otimes M.$$

We have 
$$\left(\partial^{L\otimes M}\right)^2 = 0$$

### Definition

Let *L* and *N* be complexes. The *tensor product*  $L \otimes M$  is the complex given by the graded module  $L^{\natural} \otimes M^{\natural}$ , endowed with the differential  $\partial^{L \otimes M}$ .

In particular, consider the homomorphism of degree -1 given by

$$\partial^{L\otimes M} = \partial^L \otimes \mathrm{id}_M + \mathrm{id}_L \otimes \partial^M : L \otimes M \longrightarrow L \otimes M.$$

We have 
$$\left(\partial^{L\otimes M}\right)^2 = 0$$
.

### Definition

Let *L* and *N* be complexes. The *tensor product*  $L \otimes M$  is the complex given by the graded module  $L^{\natural} \otimes M^{\natural}$ , endowed with the differential  $\partial^{L \otimes M}$ .

In particular, consider the homomorphism of degree -1 given by

$$\partial^{L\otimes M} = \partial^L \otimes \mathrm{id}_M + \mathrm{id}_L \otimes \partial^M : L \otimes M \longrightarrow L \otimes M.$$

We have 
$$\left(\partial^{L\otimes M}\right)^2 = 0$$
.

### Definition

Let *L* and *N* be complexes. The *tensor product*  $L \otimes M$  is the complex given by the graded module  $L^{\natural} \otimes M^{\natural}$ , endowed with the differential  $\partial^{L \otimes M}$ .

The tensor product  $\otimes$  defines a functor  $-\otimes -: \mathcal{DGM}(\mathbb{K}) \times \mathcal{DGM}(\mathbb{K}) \longrightarrow \mathcal{DGM}(\mathbb{K})$ with nice properties.

A monoidal category  $\mathcal{B} = (\mathcal{B}, -\Box -, E, \alpha, \lambda, \rho)$  is a category  $\mathcal{B}$  endowed with a functor

 $-\Box - : \mathcal{B} \times \mathcal{B} \longrightarrow \mathcal{B}$  (the tensor product),

an object  $E \in \mathsf{Ob}\,\mathcal{B}$  (the tensor unit), and three natural isomorphisms,

 $\alpha: (-\Box -) \circ ((-\Box -) \times id_{\mathcal{B}}) \longrightarrow (-\Box -) \circ (id_{\mathcal{B}} \times (-\Box -))$ (the associator),

 $\lambda: (-\Box -) \circ (E \times id_{\mathcal{B}}) \longrightarrow id_{\mathcal{B}}$  (the left unitor),

 $\rho: (-\Box -) \circ (\mathrm{id}_{\mathcal{B}} \times E) \longrightarrow \mathrm{id}_{\mathcal{B}}$  (the right unitor),

A monoidal category  $\mathcal{B} = (\mathcal{B}, -\Box -, E, \alpha, \lambda, \rho)$  is a category  $\mathcal{B}$  endowed with a functor

 $-\Box - : \mathcal{B} \times \mathcal{B} \longrightarrow \mathcal{B}$  (the tensor product),

an object  $E \in Ob \mathcal{B}$  (the tensor unit), and three natural isomorphisms,

 $\alpha: (-\Box -) \circ ((-\Box -) \times id_{\mathcal{B}}) \longrightarrow (-\Box -) \circ (id_{\mathcal{B}} \times (-\Box -))$ (the associator),

 $\lambda: (-\Box -) \circ (E \times id_{\mathcal{B}}) \longrightarrow id_{\mathcal{B}}$  (the left unitor),

 $\rho: (-\Box -) \circ (\mathrm{id}_{\mathcal{B}} \times E) \longrightarrow \mathrm{id}_{\mathcal{B}}$  (the right unitor),

A monoidal category  $\mathcal{B} = (\mathcal{B}, -\Box -, E, \alpha, \lambda, \rho)$  is a category  $\mathcal{B}$  endowed with a functor

 $-\Box - : \mathcal{B} \times \mathcal{B} \longrightarrow \mathcal{B}$  (the tensor product),

an object  $E \in Ob \mathcal{B}$  (the tensor unit), and three natural isomorphisms,

$$\begin{aligned} \alpha: (-\Box -) \circ ((-\Box -) \times \mathsf{id}_{\mathcal{B}}) &\longrightarrow (-\Box -) \circ (\mathsf{id}_{\mathcal{B}} \times (-\Box -)) \\ (\mathsf{the associator}), \end{aligned}$$

$$\lambda: (-\Box -) \circ (E \times id_{\mathcal{B}}) \longrightarrow id_{\mathcal{B}}$$
 (the left unitor),

 $\rho: (-\Box -) \circ (\mathrm{id}_{\mathcal{B}} \times E) \longrightarrow \mathrm{id}_{\mathcal{B}}$  (the right unitor),

A monoidal category  $\mathcal{B} = (\mathcal{B}, -\Box -, E, \alpha, \lambda, \rho)$  is a category  $\mathcal{B}$  endowed with a functor

 $-\Box - : \mathcal{B} \times \mathcal{B} \longrightarrow \mathcal{B}$  (the tensor product),

an object  $E \in Ob \mathcal{B}$  (the tensor unit), and three natural isomorphisms,

$$\begin{aligned} \alpha: (-\Box -) \circ ((-\Box -) \times \mathsf{id}_{\mathcal{B}}) &\longrightarrow (-\Box -) \circ (\mathsf{id}_{\mathcal{B}} \times (-\Box -)) \\ (\mathsf{the associator}), \end{aligned}$$

$$\lambda: (-\Box -) \circ (E imes \mathsf{id}_{\mathcal{B}}) \longrightarrow \mathsf{id}_{\mathcal{B}}$$
 (the left unitor),

 $\rho: (-\Box -) \circ (\mathrm{id}_{\mathcal{B}} \times E) \longrightarrow \mathrm{id}_{\mathcal{B}}$  (the right unitor),

A monoidal category  $\mathcal{B} = (\mathcal{B}, -\Box -, E, \alpha, \lambda, \rho)$  is a category  $\mathcal{B}$  endowed with a functor

 $-\Box - : \mathcal{B} \times \mathcal{B} \longrightarrow \mathcal{B}$  (the tensor product),

an object  $E \in Ob \mathcal{B}$  (the tensor unit), and three natural isomorphisms,

$$\begin{aligned} \alpha: (-\Box -) \circ ((-\Box -) \times \mathsf{id}_{\mathcal{B}}) &\longrightarrow (-\Box -) \circ (\mathsf{id}_{\mathcal{B}} \times (-\Box -)) \\ (\mathsf{the associator}), \end{aligned}$$

$$\lambda: (-\Box -) \circ (E \times id_{\mathcal{B}}) \longrightarrow id_{\mathcal{B}}$$
 (the left unitor),

 $\rho: (-\Box -) \circ (\operatorname{id}_{\mathcal{B}} \times E) \longrightarrow \operatorname{id}_{\mathcal{B}}$  (the right unitor),

A monoidal category  $\mathcal{B} = (\mathcal{B}, -\Box -, E, \alpha, \lambda, \rho)$  is a category  $\mathcal{B}$  endowed with a functor

 $-\Box - : \mathcal{B} \times \mathcal{B} \longrightarrow \mathcal{B}$  (the tensor product),

an object  $E \in Ob \mathcal{B}$  (the tensor unit), and three natural isomorphisms,

$$\alpha: (-\Box -) \circ ((-\Box -) \times id_{\mathcal{B}}) \longrightarrow (-\Box -) \circ (id_{\mathcal{B}} \times (-\Box -))$$
(the associator),

$$\lambda: (-\Box -) \circ (E imes \mathsf{id}_{\mathcal{B}}) \longrightarrow \mathsf{id}_{\mathcal{B}}$$
 (the left unitor),

 $\rho: (-\Box -) \circ (\mathrm{id}_{\mathcal{B}} \times E) \longrightarrow \mathrm{id}_{\mathcal{B}}$  (the right unitor),





**2** For  $A, B \in Ob \mathcal{B}$  the triangle identity holds





### 2.2. Symmetric monoidal categories

A monoidal category  $\mathcal{B} = (\mathcal{B}, -\Box, E, \alpha, \lambda, \rho)$  is *symmetric* if it is endowed with a natural isomorphism  $\gamma$ , called the braiding

$$\gamma: (-\Box -) \longrightarrow (-\Box -) \circ (-\times {}^{op}-),$$

satisfying conditions 1, 2 and 3.

### • $\gamma_{(A,B)} \circ \gamma_{(B,A)} = \operatorname{id}_{A \square B}$ , for every $A, B \in \operatorname{Ob} \mathcal{B}$ .

② For every  $A \in \mathsf{Ob}\,\mathcal{B}$ , there is a commutative diagram



• For every  $A, B, C \in \mathsf{Ob}\mathcal{B}$ , there is a commutative diagram

•  $\gamma_{(A,B)} \circ \gamma_{(B,A)} = \operatorname{id}_{A \square B}$ , for every  $A, B \in \operatorname{Ob} \mathcal{B}$ .

**2** For every  $A \in Ob \mathcal{B}$ , there is a commutative diagram



● For every  $A, B, C \in Ob \mathcal{B}$ , there is a commutative diagram

•  $\gamma_{(A,B)} \circ \gamma_{(B,A)} = \operatorname{id}_{A \square B}$ , for every  $A, B \in \operatorname{Ob} \mathcal{B}$ .

**2** For every  $A \in Ob \mathcal{B}$ , there is a commutative diagram



So For every  $A, B, C \in Ob \mathcal{B}$ , there is a commutative diagram

The monoidal category  $\mathcal{DGM}(\mathbb{K}) = (\mathcal{DGM}(\mathbb{K}), -\otimes -, \mathbb{K}, \alpha, \lambda, \rho)$  is symmetric, with braiding  $\gamma_{(L,M)} : L \otimes M \longrightarrow M \otimes L$   $I \otimes m \longmapsto (-1)^{|I||m|} m \otimes I$ , for  $L, M \in Ob \mathcal{DGA}(\mathbb{K})$ . 2.3. Closed symmetric monoidal categories

A symmetric monoidal category  $\mathcal{B}$  is *closed* if for all  $A \in Ob \mathcal{B}$ , each functor

$$-\Box A: \mathcal{B} \longrightarrow \mathcal{B}$$

has a right adjoint

$$[A, -] : \mathcal{B} \longrightarrow \mathcal{B}.$$

### The functor

$$-\otimes M:\mathcal{DGM}\left(\mathbb{K}
ight) imes\mathcal{DGM}\left(\mathbb{K}
ight)\longrightarrow\mathcal{DGM}\left(\mathbb{K}
ight)$$

has a right adjoint, i.e.  $\mathcal{DGM}\left(\mathbb{K}\right)$  is a closed symmetric monoidal category.

Recall: Hom (M, N) and Hom (M', N') are graded modules over  $\mathbb{K}$ .

And

Hom 
$$(\mu, \nu)$$
: Hom  $(M, N) \longrightarrow$  Hom  $(M', N')$   
(Hom  $(\mu, \nu)$ ) $(\beta) = (-1)^{|\mu|(|\nu|+|\beta|)} \nu \circ \beta \circ \mu$ 

is a homomorphism of graded modules over  $\mathbb{K}$ .

The graded module Hom (M, N), together with

$$\partial^{\operatorname{Hom}(M,N)} = \operatorname{Hom}\left(\operatorname{id}_{M},\partial^{N}\right) - \operatorname{Hom}\left(\partial^{M},\operatorname{id}_{N}\right),$$

Recall: Hom (M, N) and Hom (M', N') are graded modules over  $\mathbb{K}$ .

And

Hom 
$$(\mu, \nu)$$
: Hom  $(M, N) \longrightarrow$  Hom  $(M', N')$   
(Hom  $(\mu, \nu)$ )  $(\beta) = (-1)^{|\mu|(|\nu|+|\beta|)} \nu \circ \beta \circ \mu$ 

is a homomorphism of graded modules over  $\mathbb{K}$ .

The graded module Hom (M, N), together with

$$\partial^{\operatorname{Hom}(M,N)} = \operatorname{Hom}\left(\operatorname{id}_{M},\partial^{N}\right) - \operatorname{Hom}\left(\partial^{M},\operatorname{id}_{N}\right),$$

Recall: Hom (M, N) and Hom (M', N') are graded modules over  $\mathbb{K}$ .

And

Hom 
$$(\mu, \nu)$$
: Hom  $(M, N) \longrightarrow$  Hom  $(M', N')$   
(Hom  $(\mu, \nu)$ ) $(\beta) = (-1)^{|\mu|(|\nu|+|\beta|)} \nu \circ \beta \circ \mu$ 

### is a homomorphism of graded modules over $\mathbb{K}$ .

The graded module Hom (M, N), together with

$$\partial^{\operatorname{Hom}(M,N)} = \operatorname{Hom}\left(\operatorname{id}_{M},\partial^{N}\right) - \operatorname{Hom}\left(\partial^{M},\operatorname{id}_{N}\right),$$

Recall: Hom (M, N) and Hom (M', N') are graded modules over  $\mathbb{K}$ .

And

Hom 
$$(\mu, \nu)$$
: Hom  $(M, N) \longrightarrow$  Hom  $(M', N')$   
(Hom  $(\mu, \nu)$ )  $(\beta) = (-1)^{|\mu|(|\nu|+|\beta|)} \nu \circ \beta \circ \mu$ 

is a homomorphism of graded modules over  $\mathbb{K}$ .

The graded module Hom (M, N), together with

$$\partial^{\operatorname{Hom}(M,N)} = \operatorname{Hom}\left(\operatorname{id}_{M},\partial^{N}\right) - \operatorname{Hom}\left(\partial^{M},\operatorname{id}_{N}\right),$$

#### Indeed,

### $\mathsf{Hom}\left(-,-\right):\mathcal{DGM}\left(\mathbb{K}\right){}^{\mathit{op}}\times\mathcal{DGM}\left(\mathbb{K}\right)\longrightarrow\mathcal{DGM}\left(\mathbb{K}\right),$

defines a functor, and there is a natural isomorphism

 $\operatorname{Mor}_{\mathcal{DGM}(\mathbb{K})}(L \otimes M, N) \cong \operatorname{Mor}_{\mathcal{DGM}(\mathbb{K})}(L, \operatorname{Hom}(M, N)).$ 

Indeed,

 $\mathsf{Hom}(-,-):\mathcal{DGM}(\mathbb{K})^{\mathit{op}}\times\mathcal{DGM}(\mathbb{K})\longrightarrow\mathcal{DGM}(\mathbb{K}),$ defines a functor, and there is a natural isomorphism

 $\operatorname{Mor}_{\mathcal{DGM}(\mathbb{K})}(L \otimes M, N) \cong \operatorname{Mor}_{\mathcal{DGM}(\mathbb{K})}(L, \operatorname{Hom}(M, N)).$ 

3.1. Monoids / DG algebras

A monoid in a monoidal category  $\mathcal{B} = (\mathcal{B}, \Box, E, \alpha, \lambda, \rho)$  is an object  $A \in \text{Ob } \mathcal{B}$ , together with two morphisms

 $\mu: A \Box A \longrightarrow A \text{ (multiplication)},$ 

 $\eta: E \longrightarrow A \text{ (unit)},$ 

3.1. Monoids / DG algebras

A monoid in a monoidal category  $\mathcal{B} = (\mathcal{B}, \Box, E, \alpha, \lambda, \rho)$  is an object  $A \in \text{Ob } \mathcal{B}$ , together with two morphisms

 $\mu: A \Box A \longrightarrow A$  (multiplication),

 $\eta: E \longrightarrow A \text{ (unit)},$ 

3.1. Monoids / DG algebras

A monoid in a monoidal category  $\mathcal{B} = (\mathcal{B}, \Box, E, \alpha, \lambda, \rho)$  is an object  $A \in \text{Ob } \mathcal{B}$ , together with two morphisms

 $\mu: A \Box A \longrightarrow A$  (multiplication),

$$\eta: E \longrightarrow A \text{ (unit)},$$

3.1. Monoids / DG algebras

A monoid in a monoidal category  $\mathcal{B} = (\mathcal{B}, \Box, E, \alpha, \lambda, \rho)$  is an object  $A \in \text{Ob } \mathcal{B}$ , together with two morphisms

 $\mu: A \Box A \longrightarrow A$  (multiplication),

 $\eta: E \longrightarrow A \text{ (unit)},$ 



1









If  $\mathcal{B}$  is a symmetric monoidal category (with braiding  $\gamma$ ), then a monoid  $A = (A, \mu, \eta)$  in  $\mathcal{B}$  is said to be *commutative* if the diagram



#### commutes.

Given a monoid  $A = (A, \mu, \eta)$  we may form the *opposite monoid*  $A^{op} = (A, \mu \circ \gamma_{(A,A)}, \eta).$ 

A commutative  $\Rightarrow A = A^{op}$
If  $\mathcal{B}$  is a symmetric monoidal category (with braiding  $\gamma$ ), then a monoid  $A = (A, \mu, \eta)$  in  $\mathcal{B}$  is said to be *commutative* if the diagram



commutes.

Given a monoid  $A = (A, \mu, \eta)$  we may form the *opposite monoid*  $A^{op} = (A, \mu \circ \gamma_{(A,A)}, \eta).$ 

A commutative  $\Rightarrow A = A^{op}$ 

If  $\mathcal{B}$  is a symmetric monoidal category (with braiding  $\gamma$ ), then a monoid  $A = (A, \mu, \eta)$  in  $\mathcal{B}$  is said to be *commutative* if the diagram



commutes.

Given a monoid  $A = (A, \mu, \eta)$  we may form the *opposite monoid*  $A^{op} = (A, \mu \circ \gamma_{(A,A)}, \eta).$ 

A commutative  $\Rightarrow A = A^{op}$ 

- A complex A in DGM (K) is called a DG algebra if it is a monoid in (DGM (K), -⊗ -, K, α, λ, ρ).
- ② A DG algebra A is said to be *commutative* if it is commutative monoid in (DGM (K), ⊗ -, K, α, λ, ρ) with respect to the braiding γ.

- A complex A in DGM (K) is called a DG algebra if it is a monoid in (DGM (K), -⊗ -, K, α, λ, ρ).
- A DG algebra A is said to be commutative if it is commutative monoid in (DGM(K), -⊗ -, K, α, λ, ρ) with respect to the braiding γ.

# 3.2. Modules / DG modules

Let  $\mathcal{B} = (\mathcal{B}, \Box, E, \alpha, \lambda, \rho)$  be a monoidal category. A *(left) module* B over a monoid  $A = (A, \mu, \eta)$  is an object B in  $\mathcal{B}$ , together with a morphism

$$\nu: A \square B \longrightarrow B$$

such that the diagrams





commute.

# 3.2. Modules / DG modules

Let  $\mathcal{B} = (\mathcal{B}, \Box, E, \alpha, \lambda, \rho)$  be a monoidal category. A *(left) module* B over a monoid  $A = (A, \mu, \eta)$  is an object B in  $\mathcal{B}$ , together with a morphism

$$\nu: A \square B \longrightarrow B$$

such that the diagrams



commute.

# 3.2. Modules / DG modules

Let  $\mathcal{B} = (\mathcal{B}, \Box, E, \alpha, \lambda, \rho)$  be a monoidal category. A *(left) module* B over a monoid  $A = (A, \mu, \eta)$  is an object B in  $\mathcal{B}$ , together with a morphism

$$\nu: A \square B \longrightarrow B$$

such that the diagrams



commute.

# Right modules over a monoid are defined symmetrically.

Let  $\mathcal{B}$  be a symmetric monoidal category, with braiding  $\gamma$ , and let A be a monoid.

 $B = (B, \nu) \text{ is a left module over } A = (A, \mu, \eta)$  $\bigoplus_{B' = (B, \nu \circ \gamma_{(B,A)}) \text{ is a right module over } A^{op}$ 

Right modules over a monoid are defined symmetrically.

Let  $\mathcal{B}$  be a symmetric monoidal category, with braiding  $\gamma$ , and let A be a monoid.

$$B = (B, \nu) \text{ is a left module over } A = (A, \mu, \eta)$$
$$\bigoplus_{B' = (B, \nu \circ \gamma_{(B,A)}) \text{ is a right module over } A^{op}$$

Right modules over a monoid are defined symmetrically.

Let  $\mathcal{B}$  be a symmetric monoidal category, with braiding  $\gamma$ , and let A be a monoid.

# Let $A = (A, \mu, \eta)$ be a monoid in a monoidal category $\mathcal{B} = (\mathcal{B}, \Box, \mathcal{E}, \alpha, \lambda, \rho).$

Consider  $\beta : B \longrightarrow B'$ , morphism in  $\mathcal{B}$ , with  $B = (B, \nu)$ ,  $B' = (B', \nu')$  modules over A.

We call  $\beta$  a *morphism of modules* over A if the diagram



commutes.

Let  $A = (A, \mu, \eta)$  be a monoid in a monoidal category  $\mathcal{B} = (\mathcal{B}, \Box, \mathcal{E}, \alpha, \lambda, \rho).$ 

Consider  $\beta : B \longrightarrow B'$ , morphism in  $\mathcal{B}$ , with  $B = (B, \nu)$ ,  $B' = (B', \nu')$  modules over A.

We call  $\beta$  a *morphism of modules* over A if the diagram



commutes.

Let  $A = (A, \mu, \eta)$  be a monoid in a monoidal category  $\mathcal{B} = (\mathcal{B}, \Box, \mathcal{E}, \alpha, \lambda, \rho).$ 

Consider  $\beta : B \longrightarrow B'$ , morphism in  $\mathcal{B}$ , with  $B = (B, \nu)$ ,  $B' = (B', \nu')$  modules over A.

We call  $\beta$  a *morphism of modules* over A if the diagram



commutes.

#### Let A be a DG algebra.

- A complex M in DGM (K) is a DG module over A if M is a module over the monoid A in the monoidal category DGM (K).
- Solution (Section 2) Let M and M' are DG modules over A. A morphism β : M → M' in DGM (K) is a morphism of DG modules over A if it is morphism of modules over the monoid A in the monoidal category DGM (K).

#### Let A be a DG algebra.

- A complex M in DGM (K) is a DG module over A if M is a module over the monoid A in the monoidal category DGM (K).
- Solution (Section 2) Let M and M' are DG modules over A. A morphism β : M → M' in DGM (K) is a morphism of DG modules over A if it is morphism of modules over the monoid A in the monoidal category DGM (K).

#### Let A be a DG algebra.

- A complex M in DGM (K) is a DG module over A if M is a module over the monoid A in the monoidal category DGM (K).
- 2 Let *M* and *M'* are DG modules over *A*. A morphism β : *M* → *M'* in DGM (K) is a morphism of DG modules over *A* if it is morphism of modules over the monoid *A* in the monoidal category DGM (K).

# 4. The category $\mathcal{DGM}(A)$ and the functors $-\otimes_A -$ , $Hom_A(-, -)$

Let A be a DG algebra.

The DG modules over A and the morphisms of DG modules over A form a subcategory of  $\mathcal{DGM}(\mathbb{K})$ : denote it by  $\mathcal{DGM}(A)$ .

The category  $\mathcal{DGM}(A)$  is a K-category which is complete and cocomplete.

4. The category  $\mathcal{DGM}(A)$  and the functors  $-\otimes_A -$ ,  $Hom_A(-, -)$ 

Let A be a DG algebra.

The DG modules over A and the morphisms of DG modules over A form a subcategory of  $\mathcal{DGM}(\mathbb{K})$ : denote it by  $\mathcal{DGM}(A)$ .

The category  $\mathcal{DGM}(A)$  is a  $\mathbb{K}$ -category which is complete and cocomplete.

4. The category  $\mathcal{DGM}(A)$  and the functors  $-\otimes_A -$ ,  $Hom_A(-, -)$ 

Let A be a DG algebra.

The DG modules over A and the morphisms of DG modules over A form a subcategory of  $\mathcal{DGM}(\mathbb{K})$ : denote it by  $\mathcal{DGM}(A)$ .

The category  $\mathcal{DGM}(A)$  is a  $\mathbb{K}$ -category which is complete and cocomplete.

4.1 The functor  $\operatorname{Hom}_{A}(-,-)$ 

Let M and N be DG modules over a DG algebra A. We have morphisms of DG algebras

 $\phi^M: A \longrightarrow \operatorname{Hom}(M, M),$ 

 $\phi^N: A \longrightarrow \operatorname{Hom}(N, N).$ 

Consider the morphisms of complexes

 $f: \operatorname{Hom}(M, N) \xrightarrow{\operatorname{Hom}(M, -)_{M, N}} \operatorname{Hom}(\operatorname{Hom}(M, M), \operatorname{Hom}(M, N)) \xrightarrow{\operatorname{Hom}(\phi^M, \operatorname{Hom}(M, N))} \operatorname{Hom}(A, \operatorname{Hom}(M, N)) \xrightarrow{}$ 

 $g: \operatorname{Hom}(M, N) \xrightarrow{\operatorname{Hom}(-, N)_{M, N}} \operatorname{Hom}(\operatorname{Hom}(N, N), \operatorname{Hom}(M, N)) \xrightarrow{\operatorname{Hom}(\phi^N, \operatorname{Hom}(M, N))} \operatorname{Hom}(A, \operatorname{Hom}(M, N)) \xrightarrow{}$ 

Let M and N be DG modules over a DG algebra A. We have morphisms of DG algebras

 $\phi^{M}: A \longrightarrow \operatorname{Hom}(M, M),$ 

 $\phi^N: A \longrightarrow \operatorname{Hom}(N, N).$ 

Consider the morphisms of complexes

 $f: \operatorname{Hom}(M, N) \xrightarrow{\operatorname{Hom}(M, -)_{M, N}} \operatorname{Hom}(\operatorname{Hom}(M, M), \operatorname{Hom}(M, N)) \xrightarrow{\operatorname{Hom}(\phi^{M}, \operatorname{Hom}(M, N))} \operatorname{Hom}(A, \operatorname{Hom}(M, N)) \xrightarrow{}$ 

 $g: \operatorname{Hom}(M, N) \xrightarrow{\operatorname{Hom}(-, N)_{M, N}} \operatorname{Hom}(\operatorname{Hom}(N, N), \operatorname{Hom}(M, N)) \xrightarrow{\operatorname{Hom}(\phi^{N}, \operatorname{Hom}(M, N))} \operatorname{Hom}(A, \operatorname{Hom}(M, N)) \xrightarrow{}$ 

Let M and N be DG modules over a DG algebra A. We have morphisms of DG algebras

$$\phi^M: A \longrightarrow \operatorname{Hom} (M, M),$$

 $\phi^{\mathsf{N}}: \mathsf{A} \longrightarrow \operatorname{Hom}(\mathsf{N}, \mathsf{N}).$ 

Consider the morphisms of complexes

 $f: \operatorname{Hom}(M, N) \xrightarrow{\operatorname{Hom}(M, -)_{M, N}} \operatorname{Hom}(\operatorname{Hom}(M, M), \operatorname{Hom}(M, N)) \xrightarrow{\operatorname{Hom}(\phi^M, \operatorname{Hom}(M, N))} \operatorname{Hom}(A, \operatorname{Hom}(M, N)) \xrightarrow{}$ 

 $g: \operatorname{Hom}(M, N) \xrightarrow{\operatorname{Hom}(-, N)_{M, N}} \operatorname{Hom}(\operatorname{Hom}(N, N), \operatorname{Hom}(M, N)) \xrightarrow{\operatorname{Hom}(\phi^{N}, \operatorname{Hom}(M, N))} \operatorname{Hom}(A, \operatorname{Hom}(M, N)) \xrightarrow{}$ 

Let M and N be DG modules over a DG algebra A. We have morphisms of DG algebras

$$\phi^M: A \longrightarrow \operatorname{Hom} (M, M),$$

$$\phi^{\mathsf{N}}: \mathsf{A} \longrightarrow \operatorname{Hom}\left(\mathsf{N}, \mathsf{N}\right).$$

$$f: \operatorname{Hom}(M, N) \xrightarrow{\operatorname{Hom}(M, -)_{M, N}} \operatorname{Hom}(\operatorname{Hom}(M, M), \operatorname{Hom}(M, N)) \xrightarrow{\operatorname{Hom}(\phi^{M}, \operatorname{Hom}(M, N))} \xrightarrow{\operatorname{Hom}(A, \operatorname{Hom}(M, N))}$$

$$g: \operatorname{Hom}(M, N) \xrightarrow{\operatorname{Hom}(-, N)_{M, N}} \operatorname{Hom}(\operatorname{Hom}(N, N), \operatorname{Hom}(M, N)) \xrightarrow{\operatorname{Hom}(\phi^{N}, \operatorname{Hom}(M, N))} \operatorname{Hom}(A, \operatorname{Hom}(M, N)) \xrightarrow{}$$

Let M and N be DG modules over a DG algebra A. We have morphisms of DG algebras

$$\phi^M: A \longrightarrow \operatorname{Hom} (M, M),$$

$$\phi^{\mathsf{N}}: \mathsf{A} \longrightarrow \operatorname{Hom}\left(\mathsf{N}, \mathsf{N}\right).$$

$$f: \operatorname{Hom}(M, N) \xrightarrow{\operatorname{Hom}(M, -)_{M, N}} \operatorname{Hom}(\operatorname{Hom}(M, M), \operatorname{Hom}(M, N)) \xrightarrow{\operatorname{Hom}(\phi^M, \operatorname{Hom}(M, N))} \operatorname{Hom}(A, \operatorname{Hom}(M, N)) \xrightarrow{}$$

$$g: \operatorname{Hom}(M, N) \xrightarrow{\operatorname{Hom}(-, N)_{M, N}} \operatorname{Hom}(\operatorname{Hom}(N, N), \operatorname{Hom}(M, N)) \xrightarrow{\operatorname{Hom}(\phi^{N}, \operatorname{Hom}(M, N))} \xrightarrow{\operatorname{Hom}(A, \operatorname{Hom}(M, N))}$$

# Define $\text{Hom}_A(M, N)$ to be the equaliser of the morphisms f and g.

The functor  $\mathsf{Hom}\left(-,ight)$  restricts to a functor

 $\operatorname{Hom}_{A}(-,-):\mathcal{DGM}\left(A
ight)^{\operatorname{op}} imes\mathcal{DGM}\left(A
ight)\longrightarrow\mathcal{DGM}\left(\mathbb{K}
ight).$ 

Define  $\text{Hom}_A(M, N)$  to be the equaliser of the morphisms f and g.

The functor Hom (-, -) restricts to a functor

 $\mathsf{Hom}_{\mathcal{A}}\left(-,-\right):\mathcal{DGM}\left(\mathcal{A}\right){}^{op}\times\mathcal{DGM}\left(\mathcal{A}\right)\longrightarrow\mathcal{DGM}\left(\mathbb{K}\right).$ 

Let L and M be DG modules over the DG algebras  $A^{op}$  and A, respectively, with actions

$$\nu^L: A \otimes L \longrightarrow L,$$

 $\nu^M:A\otimes M\longrightarrow M.$ 

$$f: A \otimes L \otimes M \xrightarrow{\nu^L \otimes M} L \otimes M$$

$$g: A \otimes L \otimes M \xrightarrow{\gamma_{(A,L)} \otimes M} L \otimes A \otimes M \xrightarrow{L \otimes \nu^M} L \otimes M$$

Let L and M be DG modules over the DG algebras  $A^{op}$  and A, respectively, with actions

$$\nu^L: A \otimes L \longrightarrow L,$$

$$\nu^M : A \otimes M \longrightarrow M.$$

$$f: A \otimes L \otimes M \xrightarrow{\nu^L \otimes M} L \otimes M$$

$$g: A \otimes L \otimes M \xrightarrow{\gamma_{(A,L)} \otimes M} L \otimes A \otimes M \xrightarrow{L \otimes \nu^M} L \otimes M \xrightarrow{}$$

Let L and M be DG modules over the DG algebras  $A^{op}$  and A, respectively, with actions

$$\nu^L: A \otimes L \longrightarrow L,$$

$$\nu^M: A \otimes M \longrightarrow M.$$

$$f: A \otimes L \otimes M \xrightarrow{\nu^L \otimes M} L \otimes M$$
,

$$g: A \otimes L \otimes M \xrightarrow{\gamma_{(A,L)} \otimes M} L \otimes A \otimes M \xrightarrow{L \otimes \nu^M} L \otimes M \xrightarrow{}$$

Let L and M be DG modules over the DG algebras  $A^{op}$  and A, respectively, with actions

$$\nu^L: A \otimes L \longrightarrow L,$$

$$\nu^M: A \otimes M \longrightarrow M.$$

$$f: A \otimes L \otimes M \xrightarrow{\nu^L \otimes M} L \otimes M$$
,

$$g: A \otimes L \otimes M \xrightarrow{\gamma_{(A,L)} \otimes M} L \otimes A \otimes M \xrightarrow{L \otimes \nu^M} L \otimes M \xrightarrow{} K$$

Define  $L \otimes_A M$  to be the factor complex of  $L \otimes M$  which is the coequaliser of the morphisms f and g.

The functor  $-\otimes$  - induces a functor

 $-\otimes_{A} - : \mathcal{DGM}(A^{op}) \times \mathcal{DGM}(A) \longrightarrow \mathcal{DGM}(\mathbb{K}).$ 

Define  $L \otimes_A M$  to be the factor complex of  $L \otimes M$  which is the coequaliser of the morphisms f and g.

The functor  $-\otimes$  - induces a functor

$$-\otimes_{\mathcal{A}} - : \mathcal{DGM}(\mathcal{A}^{op}) imes \mathcal{DGM}(\mathcal{A}) \longrightarrow \mathcal{DGM}(\mathbb{K})$$
 .

# Let A be a commutative DG algebra.

If L and M are DG modules over A, we may consider the complex

 $L \otimes_A M$ ,

and this is a DG (left and a right) module over A.

Let A be a commutative DG algebra.

If L and M are DG modules over A, we may consider the complex

 $L \otimes_A M$ ,

and this is a DG (left and a right) module over A.

# 5. The homotopy category $\mathcal{H}(A)$

Let A be a DG algebra and

$$\beta: M \longrightarrow N$$

# a morphisms of DG modules over A.

Say that  $\beta$  is *null homotopic* if

$$\beta = \partial^N \circ \chi + \chi \circ \partial^M,$$

for some  $\chi \in (\operatorname{Hom}_A(M, N))_1$ .

5. The homotopy category  $\mathcal{H}(A)$ 

Let A be a DG algebra and

$$\beta: M \longrightarrow N$$

a morphisms of DG modules over A.

Say that  $\beta$  is *null homotopic* if

$$\beta = \partial^{\mathsf{N}} \circ \chi + \chi \circ \partial^{\mathsf{M}},$$

for some  $\chi \in (\operatorname{Hom}_A(M, N))_1$ .
The *homotopy category of a DG algebra A*, denoted by  $\mathcal{H}(A)$  is the category defined by:

•  $\operatorname{Ob} \mathcal{H}(A) = \operatorname{Ob} \mathcal{DGM}(A),$ 

•  $\operatorname{Mor}_{\mathcal{H}(A)}(M,N) = \operatorname{Mor}_{\mathcal{DGM}(A)}(M,N) / \text{ null homotopy.}$ 

The *homotopy category of a DG algebra A*, denoted by  $\mathcal{H}(A)$  is the category defined by:

•  $\operatorname{Ob} \mathcal{H}(A) = \operatorname{Ob} \mathcal{DGM}(A)$ ,

•  $\operatorname{Mor}_{\mathcal{H}(A)}(M, N) = \operatorname{Mor}_{\mathcal{DGM}(A)}(M, N) / \text{ null homotopy.}$ 

The *homotopy category of a DG algebra A*, denoted by  $\mathcal{H}(A)$  is the category defined by:

•  $\operatorname{Ob} \mathcal{H}(A) = \operatorname{Ob} \mathcal{DGM}(A)$ ,

•  $\operatorname{Mor}_{\mathcal{H}(A)}(M, N) = \operatorname{Mor}_{\mathcal{DGM}(A)}(M, N) / \text{ null homotopy.}$ 

For every  $\beta: M \longrightarrow N$ , morphism of DG modules over a DG algebra A, we may consider a complex

$$\mathsf{Cone}\,\beta = \left(\Sigma M^{\natural} \oplus N^{\natural}, \begin{bmatrix} \partial^{\Sigma M} & 0\\ \Sigma \left(\beta\right) & \partial^{N} \end{bmatrix}\right)$$

and a short exact sequence

$$0 \longrightarrow N \stackrel{\iota}{\longrightarrow} \operatorname{Cone} \beta \stackrel{\pi}{\longrightarrow} \Sigma M \longrightarrow 0.$$

For every  $\beta: M \longrightarrow N$ , morphism of DG modules over a DG algebra A, we may consider a complex

$$\mathsf{Cone}\,\beta = \left(\Sigma M^{\natural} \oplus N^{\natural}, \begin{bmatrix} \partial^{\Sigma M} & 0\\ \Sigma \left(\beta\right) & \partial^{N} \end{bmatrix}\right)$$

and a short exact sequence

$$0 \longrightarrow N \stackrel{\iota}{\longrightarrow} \operatorname{Cone} \beta \stackrel{\pi}{\longrightarrow} \Sigma M \longrightarrow 0.$$

The category  $\mathcal{H}(A)$  is triangulated, with shift functor  $\overline{\Sigma}$  and with distinguished triangles the triangles in  $\mathcal{H}(A)$  isomorphic (in  $\mathcal{H}(A)$ !) to

$$M \xrightarrow{\overline{f}} N \xrightarrow{\overline{\iota}} Cone \beta \xrightarrow{\overline{\pi}} \overline{\Sigma}M$$

for  $\beta$  morphism in  $\mathcal{DGM}(A)$ .

# 6. The derived category $\mathcal{D}(A)$

#### Given a complex M, one defines Z(M), B(M) and H(M) as usual.

For A DG algebra, the homology defines a functor

 $H:\mathcal{DGM}\left(A\right)\longrightarrow\mathcal{GM}\left(H\left(A\right)\right).$ 

A morphism  $\beta : M \longrightarrow N$  in  $\mathcal{DGM}(A)$  such that  $H(\beta)$  is an isomorphism is called a *quasiisomorphism*.

## 6. The derived category $\mathcal{D}(A)$

Given a complex M, one defines Z(M), B(M) and H(M) as usual.

For A DG algebra, the homology defines a functor

 $H:\mathcal{DGM}\left(A\right)\longrightarrow\mathcal{GM}\left(H\left(A\right)\right).$ 

A morphism  $\beta : M \longrightarrow N$  in  $\mathcal{DGM}(A)$  such that  $H(\beta)$  is an isomorphism is called a *quasiisomorphism*.

## 6. The derived category $\mathcal{D}(A)$

Given a complex M, one defines Z(M), B(M) and H(M) as usual.

For A DG algebra, the homology defines a functor

$$H:\mathcal{DGM}\left(A\right)\longrightarrow\mathcal{GM}\left(H\left(A\right)\right).$$

A morphism  $\beta : M \longrightarrow N$  in  $\mathcal{DGM}(A)$  such that  $H(\beta)$  is an isomorphism is called a *quasiisomorphism*.

 $\{$ quasiisomorphisms $\} \subseteq \{$ morphisms in  $\mathcal{H}(A)\}$ 

#### is a multiplicative system in $\mathcal{H}(A)$ .

So we may localise  $\mathcal{H}(A)$  with respect to {quasiisomorphisms}.

Then  $\mathcal{D}(A)$  is this localisation.

 $\mathcal{D}(A)$  is a Verdier localisation of  $\mathcal{H}(A)$ .

```
\{quasiisomorphisms\} \subseteq \{morphisms in \mathcal{H}(A)\}
```

is a multiplicative system in  $\mathcal{H}(A)$ .

So we may localise  $\mathcal{H}(A)$  with respect to {quasiisomorphisms}.

Then  $\mathcal{D}(A)$  is this localisation.

 $\mathcal{D}\left(A
ight)$  is a Verdier localisation of  $\mathcal{H}\left(A
ight)$ .

```
\{quasiisomorphisms\} \subseteq \{morphisms in \mathcal{H}(A)\}
```

is a multiplicative system in  $\mathcal{H}(A)$ .

So we may localise  $\mathcal{H}(A)$  with respect to {quasiisomorphisms}.

Then  $\mathcal{D}(A)$  is this localisation.

 $\mathcal{D}(A)$  is a Verdier localisation of  $\mathcal{H}(A)$ .

```
\{quasiisomorphisms\} \subseteq \{morphisms in \mathcal{H}(A)\}
```

is a multiplicative system in  $\mathcal{H}(A)$ .

So we may localise  $\mathcal{H}(A)$  with respect to {quasiisomorphisms}.

Then  $\mathcal{D}(A)$  is this localisation.

 $\mathcal{D}(A)$  is a Verdier localisation of  $\mathcal{H}(A)$ .