The derived category of (commutative) DG algebras

Teresa Conde

20 June, 2015

Notation

- \mathbb{K} - commutative ring with identity
- \mathcal{B} - category; Ob \mathcal{B} - objects; $\operatorname{Mor}_{\mathcal{B}}(M, N)$ - morphisms

Notation

- \mathbb{K} - commutative ring with identity
- \mathcal{B} - category; Ob \mathcal{B} - objects; $\operatorname{Mor}_{\mathcal{B}}(M, N)$ - morphisms
- "DG" = "differential graded"

Notation

- \mathbb{K} - commutative ring with identity
- \mathcal{B} - category; Ob \mathcal{B} - objects; $\operatorname{Mor}_{\mathcal{B}}(M, N)$ - morphisms
- "DG" = "differential graded"

Outline

(1) The category of complexes $\mathcal{D G} \mathcal{M}(\mathbb{K})$
(2) $(\mathcal{D G M}(\mathbb{K}), \otimes)$ as a closed symmetric monoidal category

Outline

(1) The category of complexes $\mathcal{D G M}(\mathbb{K})$

(2) $(\mathcal{D G M}(\mathbb{K}), \otimes)$ as a closed symmetric monoidal category

Outline

(1) The category of complexes $\mathcal{D G} \mathcal{M}(\mathbb{K})$
(2) $(\mathcal{D G M}(\mathbb{K}), \otimes)$ as a closed symmetric monoidal category
(3) DG algebras and DG modules

- The category $\mathcal{D G M}(A)$ and the functors

Outline

(1) The category of complexes $\mathcal{D G} \mathcal{M}(\mathbb{K})$
(2) $(\mathcal{D G M}(\mathbb{K}), \otimes)$ as a closed symmetric monoidal category
(3) DG algebras and DG modules

(5) The homotopy category $\mathcal{H}(A)$

Outline

(1) The category of complexes $\mathcal{D G \mathcal { M }}(\mathbb{K})$
(2) $(\mathcal{D G M}(\mathbb{K}), \otimes)$ as a closed symmetric monoidal category
(3) DG algebras and DG modules
(9) The category $\mathcal{D G} \mathcal{M}(A)$ and the functors $-\otimes_{A}-$, $\operatorname{Hom}_{A}(-,-)$
(6) The homotopy category $\mathcal{H}(A)$
(0) The derived category $\mathcal{D}(A)$

Outline

(1) The category of complexes $\mathcal{D G \mathcal { M }}(\mathbb{K})$
(2) $(\mathcal{D G M}(\mathbb{K}), \otimes)$ as a closed symmetric monoidal category
(3) DG algebras and DG modules
(9) The category $\mathcal{D G} \mathcal{M}(A)$ and the functors $-\otimes_{A}-$, $\operatorname{Hom}_{A}(-,-)$
(6) The homotopy category $\mathcal{H}(A)$
(0) The derived category $\mathcal{D}(A)$
(0) The derived versions of $-\otimes_{A}$ - and $\operatorname{Hom}_{A}(-,-)$

Outline

(1) The category of complexes $\mathcal{D G \mathcal { M }}(\mathbb{K})$
(2) $(\mathcal{D G M}(\mathbb{K}), \otimes)$ as a closed symmetric monoidal category
(3) DG algebras and DG modules
(9) The category $\mathcal{D G} \mathcal{M}(A)$ and the functors $-\otimes_{A}-$, $\operatorname{Hom}_{A}(-,-)$
(6) The homotopy category $\mathcal{H}(A)$
(0) The derived category $\mathcal{D}(A)$
(3) The derived versions of $-\otimes_{A}$ - and $\operatorname{Hom}_{A}(-,-)$

Outline

(1) The category of complexes $\mathcal{D G \mathcal { M }}(\mathbb{K})$
(2) $(\mathcal{D G M}(\mathbb{K}), \otimes)$ as a closed symmetric monoidal category
(3) DG algebras and DG modules
(9) The category $\mathcal{D G} \mathcal{M}(A)$ and the functors $-\otimes_{A}-$, $\operatorname{Hom}_{A}(-,-)$
(6) The homotopy category $\mathcal{H}(A)$
(0) The derived category $\mathcal{D}(A)$
(3) The derived versions of $-\otimes_{A}$ - and $\operatorname{Hom}_{A}(-,-)$

1. The category of complexes $\mathcal{D G} \mathcal{M}(\mathbb{K})$

1.1. Objects and morphisms in $\mathcal{D G} \mathcal{M}(\mathbb{K})$

The objects of $\mathcal{D G M}(\mathbb{K})$ are complexes of \mathbb{K}-modules, i.e. sequences of homomorphisms of \mathbb{K}-modules

$$
M=\ldots \longrightarrow M_{i+1} \xrightarrow{\partial_{i+1}^{M}} M_{i} \xrightarrow{\partial_{i}^{M}} M_{i-1} \longrightarrow \cdots
$$

such that $\partial_{i}^{M} \circ \partial_{i+1}^{M}=0$ for all i.
We write $m \in M$ if $m \in M_{d}$ for a certain d. In this case we say
that m has degree d, and write $|m|=d$.

1. The category of complexes $\mathcal{D G} \mathcal{M}(\mathbb{K})$

1.1. Objects and morphisms in $\mathcal{D G} \mathcal{M}(\mathbb{K})$

The objects of $\mathcal{D G M}(\mathbb{K})$ are complexes of \mathbb{K}-modules, i.e. sequences of homomorphisms of \mathbb{K}-modules

$$
M=\ldots \longrightarrow M_{i+1} \xrightarrow{\partial_{i+1}^{M}} M_{i} \xrightarrow{\partial_{i}^{M}} M_{i-1} \longrightarrow \cdots
$$

such that $\partial_{i}^{M} \circ \partial_{i+1}^{M}=0$ for all i.
We write $m \in M$ if $m \in M_{d}$ for a certain d. In this case we say that m has degree d, and write $|m|=d$.

A morphism $\beta: M \longrightarrow N$ in $\mathcal{D G \mathcal { M }}(\mathbb{K})$ is a family of homomorphisms of \mathbb{K}-modules

$$
\beta=\left(\beta_{i}: M_{i} \longrightarrow N_{i}\right)_{i \in \mathbb{Z}}
$$

such that the diagram

commutes.
The category $\mathcal{D G} \mathcal{M}(\mathbb{K})$ is a \mathbb{K}-category which is complete and

A morphism $\beta: M \longrightarrow N$ in $\mathcal{D G \mathcal { M }}(\mathbb{K})$ is a family of homomorphisms of \mathbb{K}-modules

$$
\beta=\left(\beta_{i}: M_{i} \longrightarrow N_{i}\right)_{i \in \mathbb{Z}}
$$

such that the diagram

commutes.
The category $\mathcal{D G M}(\mathbb{K})$ is a \mathbb{K}-category which is complete and cocomplete.
1.2. Some functors and further notions

Given a complex M

$$
M=\ldots \longrightarrow M_{i+1} \xrightarrow{\partial_{i+1}^{M}} M_{i} \xrightarrow{\partial_{i}^{M}} M_{i-1} \longrightarrow \cdots,
$$

we may consider a new complex M^{\natural}
1.2. Some functors and further notions

Given a complex M

$$
M=\ldots \longrightarrow M_{i+1} \xrightarrow{\partial_{i+1}^{M}} M_{i} \xrightarrow{\partial_{i}^{M}} M_{i-1} \longrightarrow \cdots,
$$

we may consider a new complex M^{\natural}

$$
M^{\natural}=\cdots \longrightarrow M_{i+1} \xrightarrow{0} M_{i} \xrightarrow{0} M_{i-1} \longrightarrow \cdots
$$

Define $\mathcal{G M}(\mathbb{K})$ to be the full subcategory of $\mathcal{D G M}(\mathbb{K})$ whose objects are the complexes M such that $\partial^{M}=0$.

Then $(-)^{4}$ defines a forgetful functor

$M \longmapsto M^{\natural}$.

Define $\mathcal{G M}(\mathbb{K})$ to be the full subcategory of $\mathcal{D G M}(\mathbb{K})$ whose objects are the complexes M such that $\partial^{M}=0$.

Then $(-)^{\natural}$ defines a forgetful functor

$$
\begin{aligned}
(-)^{\natural}: \mathcal{D G M}(\mathbb{K}) & \longrightarrow \mathcal{G M}(\mathbb{K}) \\
M & \longmapsto M^{\natural} .
\end{aligned}
$$

We may also consider the autofunctor Σ

$$
\Sigma: \mathcal{D G} \mathcal{M}(\mathbb{K}) \longrightarrow \mathcal{D G} \mathcal{M}(\mathbb{K})
$$

which assigns a complex $\Sigma(M)$ to each complex M, where

$$
\begin{aligned}
(\Sigma(M))_{i} & =M_{i-1} \\
\partial_{i}^{\Sigma(M)} & =-\partial_{i-1}^{M} .
\end{aligned}
$$

The functors Σ and $(-)^{\natural}$ commute with each other.

We may also consider the autofunctor Σ

$$
\Sigma: \mathcal{D G \mathcal { G }}(\mathbb{K}) \longrightarrow \mathcal{D} \mathcal{G} \mathcal{M}(\mathbb{K})
$$

which assigns a complex $\Sigma(M)$ to each complex M, where

$$
\begin{aligned}
(\Sigma(M))_{i} & =M_{i-1} \\
\partial_{i}^{\Sigma(M)} & =-\partial_{i-1}^{M} .
\end{aligned}
$$

The functors Σ and $(-)^{\natural}$ commute with each other.

Let M and N be complexes.

```
We call }\beta\mathrm{ a chain map of degree }d\mathrm{ from M to N if
\beta\in Mor }\mp@subsup{\operatorname{DG\mathcal{M}(\mathbb{K})}}{(M,\mp@subsup{\Sigma}{}{-d}}{(N)).
```

We call β a homomorphism of degree d from M to N if β is a chain map of degree d from M^{\natural} to N^{\natural}.

Let M and N be complexes.
We call β a chain map of degree d from M to N if $\beta \in \operatorname{Mor}_{\mathcal{D G} \mathcal{M}(\mathbb{K})}\left(M, \Sigma^{-d}(N)\right)$.

We call β a homomorphism of degree d from M to N if β is a chain map of degree d from M^{\natural} to N^{\natural}. Write $|\beta|=d$ and define

Let M and N be complexes.
We call β a chain map of degree d from M to N if $\beta \in \operatorname{Mor}_{\mathcal{D G} \mathcal{M}(\mathbb{K})}\left(M, \Sigma^{-d}(N)\right)$.

We call β a homomorphism of degree d from M to N if β is a chain map of degree d from M^{\natural} to N^{\natural}. and define

Let M and N be complexes.
We call β a chain map of degree d from M to N if $\beta \in \operatorname{Mor}_{\mathcal{D G M}(\mathbb{K})}\left(M, \Sigma^{-d}(N)\right)$.

We call β a homomorphism of degree d from M to N if β is a chain map of degree d from M^{\natural} to N^{\natural}. Write $|\beta|=d$ and define

$$
\operatorname{Hom}(M, N)=\bigsqcup_{i: i \in \mathbb{Z}} \operatorname{Mor}_{\mathcal{G} \mathcal{M}(\mathbb{K})}\left(M^{\natural}, \Sigma^{i} N^{\natural}\right)
$$

1.3. A tensor product in $\mathcal{D G M}(\mathbb{K})$

A graded set is a family of sets $\left(X_{i}\right)_{i \in \mathbb{Z}}$.
A homogeneous map of graded sets, $\beta: X \longrightarrow Y$, is a family of
maps

$$
\beta=\left(\beta_{i}: X_{i} \longrightarrow Y_{i+d}\right)_{i \in \mathbb{Z}},
$$

for some fixed d.

If X and Y are graded sets their graded product is the graded set
1.3. A tensor product in $\mathcal{D G M}(\mathbb{K})$

A graded set is a family of sets $\left(X_{i}\right)_{i \in \mathbb{Z}}$.
A homogeneous map of graded sets, $\beta: X \longrightarrow Y$, is a family of maps

$$
\beta=\left(\beta_{i}: X_{i} \longrightarrow Y_{i+d}\right)_{i \in \mathbb{Z}},
$$

for some fixed d.
If X and Y are graded sets their graded product is the graded set

1.3. A tensor product in $\mathcal{D G M}(\mathbb{K})$

A graded set is a family of sets $\left(X_{i}\right)_{i \in \mathbb{Z}}$.
A homogeneous map of graded sets, $\beta: X \longrightarrow Y$, is a family of maps

$$
\beta=\left(\beta_{i}: X_{i} \longrightarrow Y_{i+d}\right)_{i \in \mathbb{Z}},
$$

for some fixed d.
If X and Y are graded sets their graded product is the graded set

$$
X \boxtimes Y=\left(\bigsqcup_{i, j: i+j=h}\left(X_{i} \times Y_{j}\right)\right)_{h \in \mathbb{Z}}
$$

Let L, M and N be in $\operatorname{Ob} \mathcal{G M}(\mathbb{K})$.
A homogeneous map $\psi: L \boxtimes M \longrightarrow N$ is called \mathbb{K}-bilinear if, for every $i, j \in \mathbb{Z}$ with $i+j=h, I, l^{\prime} \in L_{i}, m, m^{\prime} \in M_{j}$ and $k \in \mathbb{K}$, there are identities

$$
\begin{aligned}
\psi_{h}\left(l+l^{\prime}, m\right) & =\psi_{h}(l, m)+\psi_{h}\left(l^{\prime}, m\right) \\
\psi_{h}\left(l, m+m^{\prime}\right) & =\psi_{h}(l, m)+\psi_{h}\left(l, m^{\prime}\right) \\
\psi_{h}(k l, m) & =\psi_{h}(l, k m)
\end{aligned}
$$

Let L, M and N be in $\operatorname{Ob} \mathcal{G M}(\mathbb{K})$.

A homogeneous map $\psi: L \boxtimes M \longrightarrow N$ is called \mathbb{K}-bilinear if, for every $i, j \in \mathbb{Z}$ with $i+j=h, I, I^{\prime} \in L_{i}, m, m^{\prime} \in M_{j}$ and $k \in \mathbb{K}$, there are identities

Let L, M and N be in $\operatorname{Ob} \mathcal{G M}(\mathbb{K})$.

A homogeneous map $\psi: L \boxtimes M \longrightarrow N$ is called \mathbb{K}-bilinear if, for every $i, j \in \mathbb{Z}$ with $i+j=h, I, I^{\prime} \in L_{i}, m, m^{\prime} \in M_{j}$ and $k \in \mathbb{K}$, there are identities

$$
\begin{aligned}
\psi_{h}\left(I+I^{\prime}, m\right) & =\psi_{h}(I, m)+\psi_{h}\left(I^{\prime}, m\right), \\
\psi_{h}\left(I, m+m^{\prime}\right) & =\psi_{h}(I, m)+\psi_{h}\left(I, m^{\prime}\right), \\
\psi_{h}(k I, m) & =\psi_{h}(I, k m) .
\end{aligned}
$$

Let L, M and N be in $\operatorname{Ob} \mathcal{G M}(\mathbb{K})$.
Denote by $L \otimes M$ the graded module over \mathbb{K} with $h^{\text {th }}$ component

$$
(L \otimes M)_{h}=\bigoplus_{i, j: i+j=h}\left(L_{i} \otimes_{\mathbb{K}} M_{j}\right) .
$$

Universal property of
 Let $\psi: L \boxtimes M \longrightarrow N$ be a homogeneous K-bilinear map of graded sets of degree d. There exists a unique homomorphism of complexes

such that:

Let L, M and N be in $\operatorname{Ob} \mathcal{G M}(\mathbb{K})$.
Denote by $L \otimes M$ the graded module over \mathbb{K} with $h^{\text {th }}$ component

$$
(L \otimes M)_{h}=\bigoplus_{i, j: i+j=h}\left(L_{i} \otimes_{\mathbb{K}} M_{j}\right) .
$$

Universal property of
 Let $\psi: L \boxtimes M \longrightarrow N$ be a homogeneous \mathbb{K}-bilinear map of graded sets of degree d. There exists a unique homomorphism of

 complexes
such that:

Let L, M and N be in $\operatorname{Ob} \mathcal{G M}(\mathbb{K})$.
Denote by $L \otimes M$ the graded module over \mathbb{K} with $h^{\text {th }}$ component

$$
(L \otimes M)_{h}=\bigoplus_{i, j: i+j=h}\left(L_{i} \otimes_{\mathbb{K}} M_{j}\right)
$$

Universal property of \otimes

Let $\psi: L \boxtimes M \longrightarrow N$ be a homogeneous \mathbb{K}-bilinear map of graded sets of degree d. There exists a unique homomorphism of complexes

$$
\psi^{\prime}: L \otimes M \longrightarrow N
$$

such that:

Let L, M and N be in $\operatorname{Ob} \mathcal{G M}(\mathbb{K})$.
Denote by $L \otimes M$ the graded module over \mathbb{K} with $h^{\text {th }}$ component

$$
(L \otimes M)_{h}=\bigoplus_{i, j: i+j=h}\left(L_{i} \otimes_{\mathbb{K}} M_{j}\right) .
$$

Universal property of \otimes

Let $\psi: L \boxtimes M \longrightarrow N$ be a homogeneous \mathbb{K}-bilinear map of graded sets of degree d. There exists a unique homomorphism of complexes

$$
\psi^{\prime}: L \otimes M \longrightarrow N
$$

such that:

- $\left|\psi^{\prime}\right|=d$,

Let L, M and N be in $\operatorname{Ob} \mathcal{G} \mathcal{M}(\mathbb{K})$.
Denote by $L \otimes M$ the graded module over \mathbb{K} with $h^{\text {th }}$ component

$$
(L \otimes M)_{h}=\bigoplus_{i, j: i+j=h}\left(L_{i} \otimes_{\mathbb{K}} M_{j}\right)
$$

Universal property of \otimes

Let $\psi: L \boxtimes M \longrightarrow N$ be a homogeneous \mathbb{K}-bilinear map of graded sets of degree d. There exists a unique homomorphism of complexes

$$
\psi^{\prime}: L \otimes M \longrightarrow N
$$

such that:

- $\left|\psi^{\prime}\right|=d$,
- $\psi_{h}^{\prime}\left(I \otimes_{\mathbb{K}} m\right)=\psi_{h}(I, m)$, for $I \in L_{i}, m \in M_{j}, i+j=h$.

Let M, M^{\prime}, L and L^{\prime} be in $\operatorname{Ob} \mathcal{G} \mathcal{M}(\mathbb{K})$ and consider the homomorphisms of complexes $\lambda: L \longrightarrow L^{\prime}$ and $\mu: M \longrightarrow M^{\prime}$.

By the universal property of \otimes there is a homomorphism

of degree $|\lambda|+|\mu|$, satisfying

$$
(\lambda \otimes \mu)(1 \otimes m)=(-1)^{|\mu||I|} \lambda(I) \otimes \mu(m) .
$$

Let M, M^{\prime}, L and L^{\prime} be in $\operatorname{Ob} \mathcal{G} \mathcal{M}(\mathbb{K})$ and consider the homomorphisms of complexes $\lambda: L \longrightarrow L^{\prime}$ and $\mu: M \longrightarrow M^{\prime}$.

By the universal property of \otimes there is a homomorphism

$$
\lambda \otimes \mu: L \otimes M \longrightarrow L^{\prime} \otimes M^{\prime}
$$

of degree $|\lambda|+|\mu|$, satisfying

$$
(\lambda \otimes \mu)(I \otimes m)=(-1)^{|\mu| I \mid} \lambda(I) \otimes \mu(m)
$$

In particular, consider the homomorphism of degree -1 given by

$$
\partial^{L \otimes M}=\partial^{L} \otimes \mathrm{id}_{M}+\mathrm{id}_{L} \otimes \partial^{M}: L \otimes M \longrightarrow L \otimes M
$$

We have $\left(\partial^{L \otimes M}\right)^{2}=0$.

In particular, consider the homomorphism of degree -1 given by

$$
\partial^{L \otimes M}=\partial^{L} \otimes \operatorname{id}_{M}+\operatorname{id}_{L} \otimes \partial^{M}: L \otimes M \longrightarrow L \otimes M
$$

We have $\left(\partial^{L \otimes M}\right)^{2}=0$.

Definition
Let L and N be complexes. The tensor $L \otimes M$ is the complex given by the graded module $L^{\natural} \otimes M^{\natural}$, endowed with the differential $\partial^{L} \otimes M$

In particular, consider the homomorphism of degree -1 given by

$$
\partial^{L \otimes M}=\partial^{L} \otimes \mathrm{id}_{M}+\mathrm{id}_{L} \otimes \partial^{M}: L \otimes M \longrightarrow L \otimes M
$$

We have $\left(\partial^{L \otimes M}\right)^{2}=0$.

Definition

Let L and N be complexes. The tensor product $L \otimes M$ is the complex given by the graded module $L^{\natural} \otimes M^{\natural}$, endowed with the differential $\partial^{L \otimes M}$.

The tensor product \otimes defines a functor

$$
-\otimes-: \mathcal{D G \mathcal { M }}(\mathbb{K}) \times \mathcal{D} \mathcal{G} \mathcal{M}(\mathbb{K}) \longrightarrow \mathcal{D G \mathcal { M }}(\mathbb{K})
$$

with nice properties. \because
2. $\mathcal{D} \mathcal{G} \mathcal{M}(\mathbb{K})$ as a closed symmetric monoidal category 2.1. Monoidal categories

A monoidal category $\mathcal{B}=(\mathcal{B},-\square-, E, \alpha, \lambda, \rho)$ is a category \mathcal{B} endowed with a functor

$$
-\square-: \mathcal{B} \times \mathcal{B} \longrightarrow \mathcal{B} \text { (the tensor product), }
$$

an object $E \in O b \mathcal{B}$ (the tensor unit), and three natural isomorphisms,
2. $\mathcal{D G} \mathcal{M}(\mathbb{K})$ as a closed symmetric monoidal category 2.1. Monoidal categories

A monoidal category $\mathcal{B}=(\mathcal{B},-\square-, E, \alpha, \lambda, \rho)$ is a category \mathcal{B} endowed with a functor

$$
-\square-: \mathcal{B} \times \mathcal{B} \longrightarrow \mathcal{B} \text { (the tensor product), }
$$

an object $E \in \operatorname{Ob} \mathcal{B}$ (the tensor unit), and three natural
isomorphisms,

(the associator),
2. $\mathcal{D} \mathcal{G} \mathcal{M}(\mathbb{K})$ as a closed symmetric monoidal category 2.1. Monoidal categories

A monoidal category $\mathcal{B}=(\mathcal{B},-\square-, E, \alpha, \lambda, \rho)$ is a category \mathcal{B} endowed with a functor

$$
-\square-: \mathcal{B} \times \mathcal{B} \longrightarrow \mathcal{B} \text { (the tensor product), }
$$

an object $E \in \operatorname{Ob} \mathcal{B}$ (the tensor unit), and three natural isomorphisms,

$$
\alpha:(-\square-) \circ\left((-\square-) \times \mathrm{id}_{\mathcal{B}}\right) \longrightarrow(-\square-) \circ\left(\mathrm{id}_{\mathcal{B}} \times(-\square-)\right)
$$

(the associator),

2. $\mathcal{D} \mathcal{G} \mathcal{M}(\mathbb{K})$ as a closed symmetric monoidal category 2.1. Monoidal categories

A monoidal category $\mathcal{B}=(\mathcal{B},-\square-, E, \alpha, \lambda, \rho)$ is a category \mathcal{B} endowed with a functor

$$
-\square-: \mathcal{B} \times \mathcal{B} \longrightarrow \mathcal{B} \text { (the tensor product), }
$$

an object $E \in \operatorname{Ob} \mathcal{B}$ (the tensor unit), and three natural isomorphisms,

$$
\alpha:(-\square-) \circ\left((-\square-) \times \mathrm{id}_{\mathcal{B}}\right) \longrightarrow(-\square-) \circ\left(\mathrm{id}_{\mathcal{B}} \times(-\square-)\right)
$$

(the associator),

$$
\lambda:(-\square-) \circ\left(E \times \mathrm{id}_{\mathcal{B}}\right) \longrightarrow \mathrm{id}_{\mathcal{B}} \text { (the left unitor), }
$$

$$
\rho:(-\square-) \circ\left(\operatorname{id}_{\mathcal{B}} \times E\right) \longrightarrow \mathrm{id}_{\mathcal{B}} \text { (the right unitor), }
$$

2. $\mathcal{D} \mathcal{G} \mathcal{M}(\mathbb{K})$ as a closed symmetric monoidal category 2.1. Monoidal categories

A monoidal category $\mathcal{B}=(\mathcal{B},-\square-, E, \alpha, \lambda, \rho)$ is a category \mathcal{B} endowed with a functor

$$
-\square-: \mathcal{B} \times \mathcal{B} \longrightarrow \mathcal{B} \text { (the tensor product) }
$$

an object $E \in \operatorname{Ob} \mathcal{B}$ (the tensor unit), and three natural isomorphisms,

$$
\alpha:(-\square-) \circ\left((-\square-) \times \operatorname{id}_{\mathcal{B}}\right) \longrightarrow(-\square-) \circ\left(\operatorname{id}_{\mathcal{B}} \times(-\square-)\right)
$$

(the associator),

$$
\lambda:(-\square-) \circ\left(E \times \operatorname{id}_{\mathcal{B}}\right) \longrightarrow \mathrm{id}_{\mathcal{B}} \text { (the left unitor) }
$$

$$
\rho:(-\square-) \circ\left(\operatorname{id}_{\mathcal{B}} \times E\right) \longrightarrow \operatorname{id}_{\mathcal{B}} \text { (the right unitor) }
$$

2. $\mathcal{D} \mathcal{G} \mathcal{M}(\mathbb{K})$ as a closed symmetric monoidal category 2.1. Monoidal categories

A monoidal category $\mathcal{B}=(\mathcal{B},-\square-, E, \alpha, \lambda, \rho)$ is a category \mathcal{B} endowed with a functor

$$
-\square-: \mathcal{B} \times \mathcal{B} \longrightarrow \mathcal{B} \text { (the tensor product), }
$$

an object $E \in \operatorname{Ob} \mathcal{B}$ (the tensor unit), and three natural isomorphisms,

$$
\alpha:(-\square-) \circ\left((-\square-) \times \mathrm{id}_{\mathcal{B}}\right) \longrightarrow(-\square-) \circ\left(\mathrm{id}_{\mathcal{B}} \times(-\square-)\right)
$$

(the associator),

$$
\begin{aligned}
& \lambda:(-\square-) \circ\left(E \times \mathrm{id}_{\mathcal{B}}\right) \longrightarrow \mathrm{id}_{\mathcal{B}} \text { (the left unitor), } \\
& \rho:(-\square-) \circ\left(\mathrm{id}_{\mathcal{B}} \times E\right) \longrightarrow \mathrm{id}_{\mathcal{B}} \text { (the right unitor), }
\end{aligned}
$$

satisfying properties 1 and 2 .
(1) The pentagonal diagram commutes for all $A, B, C, D \in \operatorname{Ob} \mathcal{B}$

(2) For $A, B \in \operatorname{Ob} \mathcal{B}$ the triangle identity holds

The category $\mathcal{D G \mathcal { M }}(\mathbb{K})$ is a monoidal category with

- tensor product $-\otimes$-,
- tensor unit \mathbb{K},
- α, λ and ρ as expected.
2.2. Symmetric monoidal categories

A monoidal category $\mathcal{B}=(\mathcal{B},-\square-, E, \alpha, \lambda, \rho)$ is symmetric if it is endowed with a natural isomorphism γ, called the braiding

$$
\gamma:(-\square-) \longrightarrow(-\square-) \circ\left(-\times^{\circ p}-\right),
$$

satisfying conditions 1,2 and 3 .
(1) $\gamma_{(A, B)} \circ \gamma_{(B, A)}=\operatorname{id}_{A \square B}$, for every $A, B \in \mathrm{Ob} \mathcal{B}$.
(2) For every $A \in \mathrm{Ob} \mathcal{B}$, there is a commutative diagram

(3) For every $A, B, C \in \operatorname{Ob} \mathcal{B}$, there is a commutative diagram

(1) $\gamma_{(A, B)} \circ \gamma_{(B, A)}=i d_{A \square B}$, for every $A, B \in \operatorname{Ob} \mathcal{B}$.
(2) For every $A \in \operatorname{Ob} \mathcal{B}$, there is a commutative diagram

- For every $A, B, C \in O b \mathcal{B}$, there is a commutative diagram

(1) $\gamma_{(A, B)} \circ \gamma_{(B, A)}=\operatorname{id}_{A \square B}$, for every $A, B \in \operatorname{Ob} \mathcal{B}$.
(2) For every $A \in \operatorname{Ob} \mathcal{B}$, there is a commutative diagram

(3) For every $A, B, C \in \operatorname{Ob} \mathcal{B}$, there is a commutative diagram

The monoidal category
$\mathcal{D G \mathcal { M }}(\mathbb{K})=(\mathcal{D} \mathcal{G} \mathcal{M}(\mathbb{K}),-\otimes-, \mathbb{K}, \alpha, \lambda, \rho)$ is symmetric, with braiding

$$
\begin{aligned}
\gamma_{(L, M)}: L & \otimes M \longrightarrow M \otimes L \\
I & \otimes m \longmapsto(-1)^{|/||m|} m \otimes I,
\end{aligned}
$$

for $L, M \in \operatorname{Ob} \mathcal{D G \mathcal { A }}(\mathbb{K})$.
2.3. Closed symmetric monoidal categories

A symmetric monoidal category \mathcal{B} is closed if for all $A \in \operatorname{Ob} \mathcal{B}$, each functor

$$
-\square A: \mathcal{B} \longrightarrow \mathcal{B}
$$

has a right adjoint

$$
[A,-]: \mathcal{B} \longrightarrow \mathcal{B}
$$

The functor

$$
-\otimes M: \mathcal{D G \mathcal { M }}(\mathbb{K}) \times \mathcal{D} \mathcal{G} \mathcal{M}(\mathbb{K}) \longrightarrow \mathcal{D G \mathcal { G }}(\mathbb{K})
$$

has a right adjoint, i.e. $\mathcal{D G} \mathcal{M}(\mathbb{K})$ is a closed symmetric monoidal category.

Let $\mu: M^{\prime} \longrightarrow M$ and $\nu: N \longrightarrow N^{\prime}$ be homomorphisms of complexes.

Recall: $\operatorname{Hom}(M, N)$ and $\operatorname{Hom}\left(M^{\prime}, N^{\prime}\right)$ are graded modules over \mathbb{K}.

Let $\mu: M^{\prime} \longrightarrow M$ and $\nu: N \longrightarrow N^{\prime}$ be homomorphisms of complexes.

Recall: $\operatorname{Hom}(M, N)$ and $\operatorname{Hom}\left(M^{\prime}, N^{\prime}\right)$ are graded modules over \mathbb{K}.
And
$\operatorname{Hom}(\mu, \nu): \operatorname{Hom}(M, N) \longrightarrow \operatorname{Hom}\left(M^{\prime}, N^{\prime}\right)$
is a homomorphism of graded modules over \mathbb{K}.
The graded module $\operatorname{Hom}(M, N)$, together with
becomes a complex.

Let $\mu: M^{\prime} \longrightarrow M$ and $\nu: N \longrightarrow N^{\prime}$ be homomorphisms of complexes.

Recall: $\operatorname{Hom}(M, N)$ and $\operatorname{Hom}\left(M^{\prime}, N^{\prime}\right)$ are graded modules over \mathbb{K}.
And

$$
\begin{aligned}
& \operatorname{Hom}(\mu, \nu): \operatorname{Hom}(M, N) \longrightarrow \operatorname{Hom}\left(M^{\prime}, N^{\prime}\right) \\
& (\operatorname{Hom}(\mu, \nu))(\beta)=(-1)^{\mid \mu(|\nu|+|\beta|)} \nu \circ \beta \circ \mu
\end{aligned}
$$

is a homomorphism of graded modules over \mathbb{K}.
The graded module Hom (M, N), together with $\partial^{\operatorname{Hom}(M, N)}=\operatorname{Hom}\left(\operatorname{id}_{M}, \partial^{N}\right)-\operatorname{Hom}\left(\partial^{M}, \operatorname{id}_{N}\right)$
becones a complex.

Let $\mu: M^{\prime} \longrightarrow M$ and $\nu: N \longrightarrow N^{\prime}$ be homomorphisms of complexes.

Recall: $\operatorname{Hom}(M, N)$ and $\operatorname{Hom}\left(M^{\prime}, N^{\prime}\right)$ are graded modules over \mathbb{K}.
And

$$
\begin{aligned}
& \operatorname{Hom}(\mu, \nu): \operatorname{Hom}(M, N) \longrightarrow \operatorname{Hom}\left(M^{\prime}, N^{\prime}\right) \\
& (\operatorname{Hom}(\mu, \nu))(\beta)=(-1)^{|\mu|(|\nu|+|\beta|)} \nu \circ \beta \circ \mu
\end{aligned}
$$

is a homomorphism of graded modules over \mathbb{K}.
The graded module $\operatorname{Hom}(M, N)$, together with

$$
\partial^{\operatorname{Hom}(M, N)}=\operatorname{Hom}\left(\operatorname{id}_{M}, \partial^{N}\right)-\operatorname{Hom}\left(\partial^{M}, \operatorname{id}_{N}\right)
$$

becomes a complex.

Indeed,
$\operatorname{Hom}(-,-): \mathcal{D G \mathcal { M }}(\mathbb{K})^{o p} \times \mathcal{D G} \mathcal{M}(\mathbb{K}) \longrightarrow \mathcal{D G \mathcal { M }}(\mathbb{K})$, defines a functor, and there is a natural isomorphism
$\operatorname{Mor}_{\mathcal{D G M}(\mathbb{K})}(L \otimes M, N) \cong \operatorname{Mor}_{\mathcal{D G} \mathcal{M}(\mathbb{K})}(L, \operatorname{Hom}(M, N))$.

Indeed,
$\operatorname{Hom}(-,-): \mathcal{D G M}(\mathbb{K})^{o p} \times \mathcal{D G} \mathcal{M}(\mathbb{K}) \longrightarrow \mathcal{D G \mathcal { G }}(\mathbb{K})$, defines a functor, and there is a natural isomorphism
$\operatorname{Mor}_{\mathcal{D G M}(\mathbb{K})}(L \otimes M, N) \cong \operatorname{Mor}_{\mathcal{D G \mathcal { M } (\mathbb { K })}}(L, \operatorname{Hom}(M, N))$.

3. DG algebras and DG modules

3.1. Monoids / DG algebras

A monoid in a monoidal category $\mathcal{B}=(\mathcal{B}, \square, E, \alpha, \lambda, \rho)$ is an object $A \in \operatorname{Ob} \mathcal{B}$, together with two morphisms

3. DG algebras and DG modules

3.1. Monoids / DG algebras

A monoid in a monoidal category $\mathcal{B}=(\mathcal{B}, \square, E, \alpha, \lambda, \rho)$ is an object $A \in \operatorname{Ob} \mathcal{B}$, together with two morphisms

$$
\mu: A \square A \longrightarrow A \text { (multiplication) }
$$

$$
\eta: E \longrightarrow A \text { (unit), }
$$

such that diagrams 1 and 2 commute.

3. DG algebras and DG modules

3.1. Monoids / DG algebras

A monoid in a monoidal category $\mathcal{B}=(\mathcal{B}, \square, E, \alpha, \lambda, \rho)$ is an object $A \in \mathrm{Ob} \mathcal{B}$, together with two morphisms

$$
\mu: A \square A \longrightarrow A \text { (multiplication) }
$$

$$
\eta: E \longrightarrow A \text { (unit) }
$$

such that diagrams 1 and 2 commute.

3. DG algebras and DG modules

3.1. Monoids / DG algebras

A monoid in a monoidal category $\mathcal{B}=(\mathcal{B}, \square, E, \alpha, \lambda, \rho)$ is an object $A \in \operatorname{Ob} \mathcal{B}$, together with two morphisms

$$
\mu: A \square A \longrightarrow A \text { (multiplication) }
$$

$$
\eta: E \longrightarrow A \text { (unit) }
$$

such that diagrams 1 and 2 commute.
(1)

$$
\begin{array}{cc}
A \square(A \square A) \xrightarrow{\alpha_{(A, A, A)}}(A \square A) \square A \xrightarrow{\mu \square \mathrm{id}_{A}} A \square A \\
\mathrm{id}_{A} \square \mu \mid & \downarrow^{\mu} \\
A \square A \xrightarrow{\mu}
\end{array}
$$

(1)

$$
\begin{array}{cc}
A \square(A \square A) \xrightarrow{\alpha_{(A, A, A)}}(A \square A) \square A \xrightarrow{\mu \square \mathrm{id}_{A}} A \square A \\
\mathrm{id}_{A} \square \mu \\
\downarrow & \downarrow^{\mu} \\
A \square A \xrightarrow{\mu}
\end{array}
$$

(2)

If \mathcal{B} is a symmetric monoidal category (with braiding γ), then a monoid $A=(A, \mu, \eta)$ in \mathcal{B} is said to be commutative if the diagram

commutes.
Given a monoid $A=(A, \mu, \eta)$ we may form the $A^{\circ p}=\left(A, \mu \circ \gamma_{(A, A)}, \eta\right)$.
A commutative $\Rightarrow A=A^{o p}$

If \mathcal{B} is a symmetric monoidal category (with braiding γ), then a monoid $A=(A, \mu, \eta)$ in \mathcal{B} is said to be commutative if the diagram

commutes.
Given a monoid $A=(A, \mu, \eta)$ we may form the opposite monoid $A^{\circ p}=\left(A, \mu \circ \gamma_{(A, A)}, \eta\right)$.

If \mathcal{B} is a symmetric monoidal category (with braiding γ), then a monoid $A=(A, \mu, \eta)$ in \mathcal{B} is said to be commutative if the diagram

commutes.
Given a monoid $A=(A, \mu, \eta)$ we may form the opposite monoid $A^{\circ p}=\left(A, \mu \circ \gamma_{(A, A)}, \eta\right)$.

$$
A \text { commutative } \Rightarrow A=A^{o p}
$$

Definition

(1) A complex A in $\mathcal{D G M}(\mathbb{K})$ is called a $D G$ algebra if it is a monoid in $(\mathcal{D} \mathcal{G} \mathcal{M}(\mathbb{K}),-\otimes-, \mathbb{K}, \alpha, \lambda, \rho)$.
(2) A DG algebra A is said to be commutative if it is commutative monoid in $(\mathcal{D G} \mathcal{M}(\mathbb{K}),-\otimes-, \mathbb{K}, \alpha, \lambda, \rho)$ with respect to the braiding

Definition

(1) A complex A in $\mathcal{D G M}(\mathbb{K})$ is called a $D G$ algebra if it is a monoid in $(\mathcal{D} \mathcal{G} \mathcal{M}(\mathbb{K}),-\otimes-, \mathbb{K}, \alpha, \lambda, \rho)$.
(2) A DG algebra A is said to be commutative if it is commutative monoid in $(\mathcal{D G} \mathcal{M}(\mathbb{K}),-\otimes-, \mathbb{K}, \alpha, \lambda, \rho)$ with respect to the braiding γ.
3.2. Modules / DG modules

Let $\mathcal{B}=(\mathcal{B}, \square, E, \alpha, \lambda, \rho)$ be a monoidal category. A (left) module B over a monoid $A=(A, \mu, \eta)$ is an object B in \mathcal{B}, together with a morphism

$$
\nu: A \square B \longrightarrow B
$$

such that the diagrams

3.2. Modules / DG modules

Let $\mathcal{B}=(\mathcal{B}, \square, E, \alpha, \lambda, \rho)$ be a monoidal category. A (left) module B over a monoid $A=(A, \mu, \eta)$ is an object B in \mathcal{B}, together with a morphism

$$
\nu: A \square B \longrightarrow B
$$

such that the diagrams

3.2. Modules / DG modules

Let $\mathcal{B}=(\mathcal{B}, \square, E, \alpha, \lambda, \rho)$ be a monoidal category. A (left) module B over a monoid $A=(A, \mu, \eta)$ is an object B in \mathcal{B}, together with a morphism

$$
\nu: A \square B \longrightarrow B
$$

such that the diagrams

commute.

Right modules over a monoid are defined symmetrically.
Let \mathcal{B} be a symmetric monoidal category, with braiding γ, and let A be a monoid.
$B=(B, \nu)$ is a left module over $A=(A, \mu, \eta)$ $B^{\prime}=\left(B, \nu \circ \gamma_{(B, A)}\right)$ is a right module over $A^{\circ p}$

Right modules over a monoid are defined symmetrically.
Let \mathcal{B} be a symmetric monoidal category, with braiding γ, and let A be a monoid.

$B^{\prime}=\left(B, \nu \circ \gamma_{(B, A)}\right)$ is a right module over $A^{\circ p}$

Right modules over a monoid are defined symmetrically.
Let \mathcal{B} be a symmetric monoidal category, with braiding γ, and let A be a monoid.

$$
\begin{aligned}
& B=(B, \nu) \text { is a left module over } A=(A, \mu, \eta) \\
& B^{\prime}=\left(B, \nu \circ \gamma_{(B, A)}\right) \text { is a right module over } A^{o p}
\end{aligned}
$$

Let $A=(A, \mu, \eta)$ be a monoid in a monoidal category $\mathcal{B}=(\mathcal{B}, \square, E, \alpha, \lambda, \rho)$.

Consider $\beta: B \longrightarrow B^{\prime}$, morphism in \mathcal{B}, with $B=(B, \nu)$, $B^{\prime}=\left(B^{\prime}, \nu^{\prime}\right)$ modules over A.
commutes.

Let $A=(A, \mu, \eta)$ be a monoid in a monoidal category $\mathcal{B}=(\mathcal{B}, \square, E, \alpha, \lambda, \rho)$.

Consider $\beta: B \longrightarrow B^{\prime}$, morphism in \mathcal{B}, with $B=(B, \nu)$, $B^{\prime}=\left(B^{\prime}, \nu^{\prime}\right)$ modules over A.

We call β a morphism of modules over A if the diagram

commutes.

Let $A=(A, \mu, \eta)$ be a monoid in a monoidal category $\mathcal{B}=(\mathcal{B}, \square, E, \alpha, \lambda, \rho)$.

Consider $\beta: B \longrightarrow B^{\prime}$, morphism in \mathcal{B}, with $B=(B, \nu)$, $B^{\prime}=\left(B^{\prime}, \nu^{\prime}\right)$ modules over A.

We call β a morphism of modules over A if the diagram

commutes.

Definition
Let A be a DG algebra.
(1) A complex M in $\mathcal{D G} \mathcal{M}(\mathbb{K})$ is a $D G$ module over A if M is a module over the monoid A in the monoidal category $\mathcal{D G M}(\mathbb{K})$.
(2) Let M and M^{\prime} are DG modules over A. A morphism
$\beta: M \longrightarrow M^{\prime}$ in $\mathcal{D G} \mathcal{M}(\mathbb{K})$ is a
over A if it is morphism of modules over the monoid A in the monoidal category $\mathcal{D G} \mathcal{M}(\mathbb{K})$.

Definition

Let A be a DG algebra.
(1) A complex M in $\mathcal{D G} \mathcal{M}(\mathbb{K})$ is a $D G$ module over A if M is a module over the monoid A in the monoidal category $\mathcal{D G M}(\mathbb{K})$.
(2) Let M and M^{\prime} are $D G$ modules over A. A morphism
$\beta: M \longrightarrow M^{\prime}$ in $\mathcal{D G M}(\mathbb{K})$ is a
over A if it is morphism of modules over the monoid A in the monoidal category $\mathcal{D G} \mathcal{M}(\mathbb{K})$.

Definition

Let A be a DG algebra.
(1) A complex M in $\mathcal{D G} \mathcal{M}(\mathbb{K})$ is a $D G$ module over A if M is a module over the monoid A in the monoidal category $\mathcal{D G M}(\mathbb{K})$.
(2) Let M and M^{\prime} are DG modules over A. A morphism $\beta: M \longrightarrow M^{\prime}$ in $\mathcal{D G \mathcal { M }}(\mathbb{K})$ is a morphism of $D G$ modules over A if it is morphism of modules over the monoid A in the monoidal category $\mathcal{D G} \mathcal{M}(\mathbb{K})$.
4. The category $\mathcal{D G \mathcal { M }}(A)$ and the functors $-\otimes_{A}-$, $\operatorname{Hom}_{A}(-,-)$

Let A be a DG algebra.
The DG modules over A and the morphisms of DG modules over A form a subcategory of $\mathcal{D G M}(\mathbb{K})$: denote it by $D G M(A)$.

The category $\mathcal{D} \mathcal{G} \mathcal{M}(A)$ is a \mathbb{K}-category which is complete and cocomnlete.

4. The category $\mathcal{D G \mathcal { M }}(A)$ and the functors $-\otimes_{A}-$,

 $\operatorname{Hom}_{A}(-,-)$Let A be a DG algebra.

The DG modules over A and the morphisms of DG modules over A form a subcategory of $\mathcal{D G M}(\mathbb{K})$: denote it by $D \mathcal{G M}(A)$.

The category $\mathcal{D G M}(A)$ is a \mathbb{K}-category which is complete and cocomplete.
4. The category $\mathcal{D G} \mathcal{M}(A)$ and the functors $-\otimes_{A}-$, $\operatorname{Hom}_{A}(-,-)$

Let A be a DG algebra.
The DG modules over A and the morphisms of DG modules over A form a subcategory of $\mathcal{D G M}(\mathbb{K})$: denote it by $\mathcal{D G M}(A)$.

The category $\mathcal{D G M}(A)$ is a \mathbb{K}-category which is complete and cocomplete.
4.1 The functor $\operatorname{Hom}_{A}(-,-)$

Let M and N be DG modules over a DG algebra A. We have morphisms of DG algebras

$$
\phi^{M}: A \longrightarrow \operatorname{Hom}(M, M),
$$

4.1 The functor $\operatorname{Hom}_{A}(-,-)$

Let M and N be DG modules over a DG algebra A. We have morphisms of DG algebras

$$
\phi^{M}: A \longrightarrow \operatorname{Hom}(M, M)
$$

4.1 The functor $\operatorname{Hom}_{A}(-,-)$

Let M and N be DG modules over a DG algebra A. We have morphisms of DG algebras

$$
\begin{gathered}
\phi^{M}: A \longrightarrow \operatorname{Hom}(M, M) \\
\phi^{N}: A \longrightarrow \operatorname{Hom}(N, N)
\end{gathered}
$$

Consider the morphisms of complexes

4.1 The functor $\operatorname{Hom}_{A}(-,-)$

Let M and N be DG modules over a DG algebra A. We have morphisms of DG algebras

$$
\begin{gathered}
\phi^{M}: A \longrightarrow \operatorname{Hom}(M, M) \\
\phi^{N}: A \longrightarrow \operatorname{Hom}(N, N)
\end{gathered}
$$

Consider the morphisms of complexes
$f: \operatorname{Hom}(M, N) \xrightarrow{\operatorname{Hom}(M,-)_{M, N}} \operatorname{Hom}(\operatorname{Hom}(M, M), \operatorname{Hom}(M, N)) \xrightarrow{\operatorname{Hom}\left(\phi^{M}, \operatorname{Hom}(M, N)\right)} \operatorname{Hom}(A, \operatorname{Hom}(M, N))$,
$g: \operatorname{Hom}(M, N) \xrightarrow{\operatorname{Hom}(-, N)_{M, N}} \operatorname{Hom}(\operatorname{Hom}(N, N), \operatorname{Hom}(M, N)) \xrightarrow{\text { Hom }\left(\phi^{N}, \operatorname{Hom}(M, N)\right)} \operatorname{Hom}(A, \operatorname{Hom}(M, N))$
4.1 The functor $\operatorname{Hom}_{A}(-,-)$

Let M and N be DG modules over a DG algebra A. We have morphisms of DG algebras

$$
\begin{gathered}
\phi^{M}: A \longrightarrow \operatorname{Hom}(M, M) \\
\phi^{N}: A \longrightarrow \operatorname{Hom}(N, N)
\end{gathered}
$$

Consider the morphisms of complexes

$f: \operatorname{Hom}(M, N) \xrightarrow{\operatorname{Hom}(M,-)_{M, N}} \operatorname{Hom}(\operatorname{Hom}(M, M), \operatorname{Hom}(M, N)) \xrightarrow{\operatorname{Hom}\left(\phi^{M}, \operatorname{Hom}(M, N)\right)} \operatorname{Hom}(A, \operatorname{Hom}(M, N))$,
$g: \operatorname{Hom}(M, N) \xrightarrow{\operatorname{Hom}(-, N)_{M, N}} \operatorname{Hom}(\operatorname{Hom}(N, N), \operatorname{Hom}(M, N)) \xrightarrow{\operatorname{Hom}\left(\phi^{N}, \operatorname{Hom}(M, N)\right)} \operatorname{Hom}(A, \operatorname{Hom}(M, N))$.

Define $\operatorname{Hom}_{A}(M, N)$ to be the equaliser of the morphisms f and g.

Define $\operatorname{Hom}_{A}(M, N)$ to be the equaliser of the morphisms f and g.

The functor Hom $(-,-)$ restricts to a functor

$$
\operatorname{Hom}_{A}(-,-): \mathcal{D G} \mathcal{M}(A)^{o p} \times \mathcal{D} \mathcal{G} \mathcal{M}(A) \longrightarrow \mathcal{D} \mathcal{G} \mathcal{M}(\mathbb{K})
$$

4.2 The functor $-\otimes_{A}-$

Let L and M be DG modules over the DG algebras $A^{o p}$ and A, respectively, with actions

$$
\nu^{L}: A \otimes L \longrightarrow L
$$

$$
\nu^{M}: A \otimes M \longrightarrow M
$$

Consider the morphisms of complexes
4.2 The functor $-\otimes_{A}-$

Let L and M be DG modules over the DG algebras $A^{o p}$ and A, respectively, with actions

$$
\begin{gathered}
\nu^{L}: A \otimes L \longrightarrow L \\
\nu^{M}: A \otimes M \longrightarrow M
\end{gathered}
$$

Consider the morphisms of complexes

$$
A \otimes L \otimes M \stackrel{\nu^{\prime} \otimes M}{\longrightarrow} L \otimes M
$$

4.2 The functor $-\otimes_{A}-$

Let L and M be DG modules over the DG algebras $A^{o p}$ and A, respectively, with actions

$$
\begin{gathered}
\nu^{L}: A \otimes L \longrightarrow L \\
\nu^{M}: A \otimes M \longrightarrow M
\end{gathered}
$$

Consider the morphisms of complexes

$$
f: A \otimes L \otimes M \xrightarrow{\nu^{L} \otimes M} L \otimes M
$$

4.2 The functor $-\otimes_{A}-$

Let L and M be DG modules over the DG algebras $A^{o p}$ and A, respectively, with actions

$$
\begin{gathered}
\nu^{L}: A \otimes L \longrightarrow L \\
\nu^{M}: A \otimes M \longrightarrow M
\end{gathered}
$$

Consider the morphisms of complexes

$$
\begin{gathered}
f: A \otimes L \otimes M \xrightarrow{\nu^{L} \otimes M} L \otimes M \\
g: A \otimes L \otimes M^{\gamma(A, L) \otimes M} L \otimes A \otimes M \xrightarrow{L \otimes \nu^{M}} L \otimes M
\end{gathered}
$$

Define $L \otimes_{A} M$ to be the factor complex of $L \otimes M$ which is the coequaliser of the morphisms f and g.

The functor $-\otimes$ - induces a functor

Define $L \otimes_{A} M$ to be the factor complex of $L \otimes M$ which is the coequaliser of the morphisms f and g.

The functor $-\otimes$ - induces a functor

$$
-\otimes_{A}-: \mathcal{D G \mathcal { M }}\left(A^{\circ p}\right) \times \mathcal{D G M}(A) \longrightarrow \mathcal{D G M}(\mathbb{K})
$$

Let A be a commutative DG algebra.

If L and M are $D G$ modules over A, we may consider the complex

$$
L \otimes_{A} M
$$

and this is a DG (left and a right) module over A.

Let A be a commutative DG algebra.

If L and M are $D G$ modules over A, we may consider the complex

$$
L \otimes_{A} M
$$

and this is a DG (left and a right) module over A.

5. The homotopy category $\mathcal{H}(A)$

Let A be a DG algebra and

$$
\beta: M \longrightarrow N
$$

a morphisms of $D G$ modules over A.
Say that β is null homotopic if

$$
\beta=\partial^{N} \circ \chi+\chi \circ \partial^{M},
$$

for some $\chi \in\left(\operatorname{Hom}_{A}(M, N)\right)_{1}$.

5. The homotopy category $\mathcal{H}(A)$

Let A be a DG algebra and

$$
\beta: M \longrightarrow N
$$

a morphisms of $D G$ modules over A.
Say that β is null homotopic if

$$
\beta=\partial^{N} \circ \chi+\chi \circ \partial^{M}
$$

for some $\chi \in\left(\operatorname{Hom}_{A}(M, N)\right)_{1}$.

The homotopy category of a $D G$ algebra A, denoted by $\mathcal{H}(A)$ is the category defined by:

$$
\text { - Ob H }(A)=\operatorname{Ob} \mathcal{D G} \mathcal{M}(A)
$$

The homotopy category of a $D G$ algebra A, denoted by $\mathcal{H}(A)$ is the category defined by:

- $\operatorname{ObH}(A)=\operatorname{Ob} \mathcal{D G M}(A)$,
- $\operatorname{Mor}_{\mathcal{H}(A)}(M, N)=\operatorname{Mor}_{\mathcal{D G M}(A)}(M, N) /$ null homotopy.

The homotopy category of a $D G$ algebra A, denoted by $\mathcal{H}(A)$ is the category defined by:

- $\operatorname{ObH}(A)=\operatorname{Ob} \mathcal{D G M}(A)$,
- $\operatorname{Mor}_{\mathcal{H}(A)}(M, N)=\operatorname{Mor}_{\mathcal{D G M}(A)}(M, N) /$ null homotopy.

For every $\beta: M \longrightarrow N$, morphism of DG modules over a DG algebra A, we may consider a complex

$$
\text { Cone } \beta=\left(\Sigma M^{\natural} \oplus N^{\natural},\left[\begin{array}{cc}
\partial^{\Sigma M} & 0 \\
\Sigma(\beta) & \partial^{N}
\end{array}\right]\right)
$$

and a short exact sequence

For every $\beta: M \longrightarrow N$, morphism of DG modules over a DG algebra A, we may consider a complex

$$
\text { Cone } \beta=\left(\Sigma M^{\natural} \oplus N^{\natural},\left[\begin{array}{cc}
\partial^{\Sigma M} & 0 \\
\Sigma(\beta) & \partial^{N}
\end{array}\right]\right)
$$

and a short exact sequence

$$
0 \longrightarrow N \xrightarrow{\iota} \text { Cone } \beta \xrightarrow{\pi} \Sigma M \longrightarrow 0
$$

The category $\mathcal{H}(A)$ is triangulated, with shift functor $\bar{\Sigma}$ and with distinguished triangles the triangles in $\mathcal{H}(A)$ isomorphic (in $\mathcal{H}(A)$!) to

$$
M \xrightarrow{\bar{f}} N \xrightarrow{\bar{\iota}} \text { Cone } \beta \xrightarrow{\bar{\pi}} \bar{\Sigma} M
$$

for β morphism in $\mathcal{D G} \mathcal{M}(A)$.

6. The derived category $\mathcal{D}(A)$

Given a complex M, one defines $Z(M), B(M)$ and $H(M)$ as usual. For A DG algebra, the homology defines a functor $H: \mathcal{D G M}(A) \longrightarrow \mathcal{G M}(H(A))$.

A morphism $\beta: M \longrightarrow N$ in $\mathcal{D G} \mathcal{M}(A)$ such that $H(\beta)$ is an isomorphism is called a quasiisomorphism

6. The derived category $\mathcal{D}(A)$

Given a complex M, one defines $Z(M), B(M)$ and $H(M)$ as usual.
For A DG algebra, the homology defines a functor

$$
H: \mathcal{D G} \mathcal{M}(A) \longrightarrow \mathcal{G M}(H(A))
$$

A morphism $\beta: M \longrightarrow N$ in $\mathcal{D G \mathcal { M }}(A)$ such that $H(\beta)$ is an
isomorphism is called a quasiisomorphism.

6. The derived category $\mathcal{D}(A)$

Given a complex M, one defines $Z(M), B(M)$ and $H(M)$ as usual.
For A DG algebra, the homology defines a functor

$$
H: \mathcal{D G M}(A) \longrightarrow \mathcal{G M}(H(A))
$$

A morphism $\beta: M \longrightarrow N$ in $\mathcal{D G \mathcal { M }}(A)$ such that $H(\beta)$ is an isomorphism is called a quasiisomorphism.

Quasiisomorphisms are well defined in $\mathcal{H}(A)$, and the set of morphsims

$$
\{\text { quasiisomorphisms }\} \subseteq\{\text { morphisms in } \mathcal{H}(A)\}
$$

is a multiplicative system in $\mathcal{H}(A)$.
So we may localise $\mathcal{H}(A)$ with respect to \{quasiisomorphisms\}. Then $\mathcal{D}(A)$ is this localisation.

Quasiisomorphisms are well defined in $\mathcal{H}(A)$, and the set of morphsims

$$
\{\text { quasiisomorphisms }\} \subseteq\{\text { morphisms in } \mathcal{H}(A)\}
$$

is a multiplicative system in $\mathcal{H}(A)$.
So we may localise $\mathcal{H}(A)$ with respect to \{quasiisomorphisms\}.
Then $\mathcal{D}(A)$ is this localisation.
$\mathcal{D}(A)$ is a Verdier localisation of $\mathcal{H}(A)$.

Quasiisomorphisms are well defined in $\mathcal{H}(A)$, and the set of morphsims

$$
\{\text { quasiisomorphisms }\} \subseteq\{\text { morphisms in } \mathcal{H}(A)\}
$$

is a multiplicative system in $\mathcal{H}(A)$.
So we may localise $\mathcal{H}(A)$ with respect to \{quasiisomorphisms\}.
Then $\mathcal{D}(A)$ is this localisation.
$\mathcal{D}(A)$ is a Verdier localisation of $\mathcal{H}(A)$.

Quasiisomorphisms are well defined in $\mathcal{H}(A)$, and the set of morphsims

$$
\{\text { quasiisomorphisms }\} \subseteq\{\text { morphisms in } \mathcal{H}(A)\}
$$

is a multiplicative system in $\mathcal{H}(A)$.
So we may localise $\mathcal{H}(A)$ with respect to \{quasiisomorphisms\}.
Then $\mathcal{D}(A)$ is this localisation.
$\mathcal{D}(A)$ is a Verdier localisation of $\mathcal{H}(A)$.

