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Notation

K – commutative ring with identity

B – category; ObB – objects; MorB (M,N) – morphisms

“DG” = “differential graded”
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1. The category of complexes DGM (K)

1.1. Objects and morphisms in DGM (K)

The objects of DGM (K) are complexes of K-modules, i.e.
sequences of homomorphisms of K-modules

M = · · · Mi+1 Mi Mi−1 · · ·
∂Mi+1 ∂Mi

such that ∂Mi ◦ ∂Mi+1 = 0 for all i .

We write m ∈ M if m ∈ Md for a certain d . In this case we say
that m has degree d , and write |m| = d .
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A morphism β : M −→ N in DGM (K) is a family of
homomorphisms of K-modules

β = (βi : Mi −→ Ni )i∈Z

such that the diagram

· · · Mi+1 Mi Mi−1 · · ·

· · · Ni+1 Ni Ni−1 · · ·

∂Mi+1

βi+1

∂Mi

βi βi−1

∂Ni+1 ∂Ni

commutes.

The category DGM (K) is a K-category which is complete and
cocomplete.
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1.2. Some functors and further notions

Given a complex M

M = · · · Mi+1 Mi Mi−1 · · ·
∂Mi+1 ∂Mi ,

we may consider a new complex M\

M\ = · · · Mi+1 Mi Mi−1 · · ·0 0 .
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Define GM (K) to be the full subcategory of DGM (K) whose
objects are the complexes M such that ∂M = 0.

Then (−)\ defines a forgetful functor

(−)\ : DGM (K) −→ GM (K)

M 7−→ M\.
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We may also consider the autofunctor Σ

Σ : DGM (K) −→ DGM (K)

which assigns a complex Σ (M) to each complex M, where

(Σ (M))i = Mi−1,

∂
Σ(M)
i = −∂Mi−1.

The functors Σ and (−)\ commute with each other.
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Let M and N be complexes.

We call β a chain map of degree d from M to N if
β ∈ MorDGM(K)

(
M,Σ−d (N)

)
.

We call β a homomorphism of degree d from M to N if β is a
chain map of degree d from M\ to N\. Write |β| = d and define

Hom (M,N) =
⊔

i : i∈Z
MorGM(K)

(
M\,ΣiN\

)
.
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1.3. A tensor product in DGM (K)

A graded set is a family of sets (Xi )i∈Z.

A homogeneous map of graded sets, β : X −→ Y , is a family of
maps

β = (βi : Xi −→ Yi+d)i∈Z ,

for some fixed d .

If X and Y are graded sets their graded product is the graded set

X � Y =

 ⊔
i ,j : i+j=h

(Xi × Yj)


h∈Z

.
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Let L, M and N be in ObGM (K).

A homogeneous map ψ : L�M −→ N is called K-bilinear if, for
every i , j ∈ Z with i + j = h, l , l ′ ∈ Li , m,m

′ ∈ Mj and k ∈ K,
there are identities

ψh

(
l + l ′,m

)
= ψh (l ,m) + ψh

(
l ′,m

)
,

ψh

(
l ,m + m′

)
= ψh (l ,m) + ψh

(
l ,m′

)
,

ψh (kl ,m) = ψh (l , km) .
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Let L, M and N be in ObGM (K).

Denote by L⊗M the graded module over K with hth component

(L⊗M)h =
⊕

i ,j : i+j=h

(Li ⊗K Mj) .

Universal property of ⊗
Let ψ : L�M −→ N be a homogeneous K-bilinear map of graded
sets of degree d. There exists a unique homomorphism of
complexes

ψ′ : L⊗M −→ N

such that:

|ψ′| = d,

ψ′h (l ⊗K m) = ψh (l ,m), for l ∈ Li , m ∈ Mj , i + j = h.

12/46



Let L, M and N be in ObGM (K).

Denote by L⊗M the graded module over K with hth component

(L⊗M)h =
⊕

i ,j : i+j=h

(Li ⊗K Mj) .

Universal property of ⊗
Let ψ : L�M −→ N be a homogeneous K-bilinear map of graded
sets of degree d. There exists a unique homomorphism of
complexes

ψ′ : L⊗M −→ N

such that:

|ψ′| = d,

ψ′h (l ⊗K m) = ψh (l ,m), for l ∈ Li , m ∈ Mj , i + j = h.

12/46



Let L, M and N be in ObGM (K).

Denote by L⊗M the graded module over K with hth component

(L⊗M)h =
⊕

i ,j : i+j=h

(Li ⊗K Mj) .

Universal property of ⊗
Let ψ : L�M −→ N be a homogeneous K-bilinear map of graded
sets of degree d. There exists a unique homomorphism of
complexes

ψ′ : L⊗M −→ N

such that:

|ψ′| = d,

ψ′h (l ⊗K m) = ψh (l ,m), for l ∈ Li , m ∈ Mj , i + j = h.

12/46



Let L, M and N be in ObGM (K).

Denote by L⊗M the graded module over K with hth component

(L⊗M)h =
⊕

i ,j : i+j=h

(Li ⊗K Mj) .

Universal property of ⊗
Let ψ : L�M −→ N be a homogeneous K-bilinear map of graded
sets of degree d. There exists a unique homomorphism of
complexes

ψ′ : L⊗M −→ N

such that:

|ψ′| = d,

ψ′h (l ⊗K m) = ψh (l ,m), for l ∈ Li , m ∈ Mj , i + j = h.

12/46



Let L, M and N be in ObGM (K).

Denote by L⊗M the graded module over K with hth component

(L⊗M)h =
⊕

i ,j : i+j=h

(Li ⊗K Mj) .

Universal property of ⊗
Let ψ : L�M −→ N be a homogeneous K-bilinear map of graded
sets of degree d. There exists a unique homomorphism of
complexes

ψ′ : L⊗M −→ N

such that:

|ψ′| = d,

ψ′h (l ⊗K m) = ψh (l ,m), for l ∈ Li , m ∈ Mj , i + j = h.

12/46



Let M, M ′, L and L′ be in ObGM (K) and consider the
homomorphisms of complexes λ : L −→ L′ and µ : M −→ M ′.

By the universal property of ⊗ there is a homomorphism

λ⊗ µ : L⊗M −→ L′ ⊗M ′

of degree |λ|+ |µ|, satisfying

(λ⊗ µ) (l ⊗m) = (−1)|µ||l |λ(l)⊗ µ(m).
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In particular, consider the homomorphism of degree −1 given by

∂L⊗M = ∂L ⊗ idM + idL⊗∂M : L⊗M −→ L⊗M.

We have
(
∂L⊗M

)2
= 0.

Definition

Let L and N be complexes. The tensor product L⊗M is the
complex given by the graded module L\ ⊗M\, endowed with the
differential ∂L⊗M .
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The tensor product ⊗ defines a functor

−⊗− : DGM (K)×DGM (K) −→ DGM (K)

with nice properties.
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2. DGM (K) as a closed symmetric monoidal category
2.1. Monoidal categories

A monoidal category B = (B,−�−,E , α, λ, ρ) is a category B
endowed with a functor

−�− : B × B −→ B (the tensor product),

an object E ∈ ObB (the tensor unit), and three natural
isomorphisms,

α : (−�−) ◦ ((−�−)× idB) −→ (−�−) ◦ (idB×(−�−))

(the associator),

λ : (−�−) ◦ (E × idB) −→ idB (the left unitor),

ρ : (−�−) ◦ (idB×E ) −→ idB (the right unitor),

satisfying properties 1 and 2.
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1 The pentagonal diagram commutes for all A,B,C ,D ∈ ObB

(A�B)� (C�D)

A� (B� (C�D)) ((A�B)�C )�D

A� ((B�C )�D) (A� (B�C ))�D

α(A�B,C ,D)

idA �α(B,C ,D)

α(A,B,C�D)

α(A,B�C ,D)

α(A,B,C)� idD

.
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2 For A,B ∈ ObB the triangle identity holds

A� (E�B) (A�E )�B

A�B

αA,E ,B

idA �λB ρA� idB

.
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The category DGM (K) is a monoidal category with

tensor product −⊗−,

tensor unit K,

α, λ and ρ as expected.
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2.2. Symmetric monoidal categories

A monoidal category B = (B,−�−,E , α, λ, ρ) is symmetric if it is
endowed with a natural isomorphism γ, called the braiding

γ : (−�−) −→ (−�−) ◦ (−× op−),

satisfying conditions 1, 2 and 3.
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1 γ(A,B) ◦ γ(B,A) = idA�B , for every A,B ∈ ObB.

2 For every A ∈ ObB, there is a commutative diagram

A�E E�A

A

γ(A,E)

ρA λA

.

3 For every A,B,C ∈ ObB, there is a commutative diagram

A� (B�C ) (A�B)�C C� (A�B)

A� (C�B) (A�C )�B (C�A)�B

idA �γ(B,C)

α(A,B,C) γ(A�B,C)

α(C ,A,B)

α(A,B,C) γ(A,C)� idB

.
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The monoidal category
DGM (K) = (DGM (K) ,−⊗−,K, α, λ, ρ) is symmetric,
with braiding

γ(L,M) : L⊗M −→ M ⊗ L

l ⊗m 7−→ (−1)|l ||m|m ⊗ l ,

for L,M ∈ ObDGA (K).
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2.3. Closed symmetric monoidal categories

A symmetric monoidal category B is closed if for all A ∈ ObB,
each functor

−�A : B −→ B

has a right adjoint
[A,−] : B −→ B.
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The functor

−⊗M : DGM (K)×DGM (K) −→ DGM (K)

has a right adjoint, i.e. DGM (K) is a closed symmetric
monoidal category.
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Let µ : M ′ −→ M and ν : N −→ N ′ be homomorphisms of
complexes.

Recall: Hom (M,N) and Hom (M ′,N ′) are graded modules over K.

And
Hom (µ, ν) : Hom (M,N) −→ Hom

(
M ′,N ′

)
(Hom (µ, ν)) (β) = (−1)|µ|(|ν|+|β|) ν ◦ β ◦ µ

is a homomorphism of graded modules over K.

The graded module Hom (M,N), together with

∂Hom(M,N) = Hom
(

idM , ∂
N
)
− Hom

(
∂M , idN

)
,

becomes a complex.
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Indeed,

Hom (−,−) : DGM (K) op ×DGM (K) −→ DGM (K) ,

defines a functor, and there is a natural isomorphism

MorDGM(K) (L⊗M,N) ∼= MorDGM(K) (L,Hom (M,N)) .
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3. DG algebras and DG modules

3.1. Monoids / DG algebras

A monoid in a monoidal category B = (B,�,E , α, λ, ρ) is an
object A ∈ ObB, together with two morphisms

µ : A�A −→ A (multiplication),

η : E −→ A (unit),

such that diagrams 1 and 2 commute.
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1

A� (A�A) (A�A)�A A�A

A�A A

idA �µ

α(A,A,A) µ� idA

µ

µ

2

E�A A�A A�E

A
λA

η� idA

µ
ρA

idA �η
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1

A� (A�A) (A�A)�A A�A

A�A A

idA �µ

α(A,A,A) µ� idA

µ

µ

2

E�A A�A A�E

A
λA

η� idA

µ
ρA

idA �η
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If B is a symmetric monoidal category (with braiding γ), then a
monoid A = (A, µ, η) in B is said to be commutative if the diagram

A�A A�A

A

µ

γ(A,A)

µ

commutes.

Given a monoid A = (A, µ, η) we may form the opposite monoid
Aop = (A, µ ◦ γ(A,A), η).

A commutative ⇒ A = Aop
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Definition
1 A complex A in DGM (K) is called a DG algebra if it is a

monoid in (DGM (K) ,−⊗−,K, α, λ, ρ).

2 A DG algebra A is said to be commutative if it is
commutative monoid in (DGM (K) ,−⊗−,K, α, λ, ρ) with
respect to the braiding γ.
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3.2. Modules / DG modules

Let B = (B,�,E , α, λ, ρ) be a monoidal category. A (left) module
B over a monoid A = (A, µ, η) is an object B in B, together with a
morphism

ν : A�B −→ B

such that the diagrams

A�(A�B) (A�A)�B A�B

A�B B

idA �ν

α(A,A,B) µ� idB

ν

ν

E�B A�B

B
λB

η� idB

ν

commute.
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Right modules over a monoid are defined symmetrically.

Let B be a symmetric monoidal category, with braiding γ, and let
A be a monoid.

B = (B, ν) is a left module over A = (A, µ, η)
m

B ′ =
(
B, ν ◦ γ(B,A)

)
is a right module over Aop
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Let A = (A, µ, η) be a monoid in a monoidal category
B = (B,�,E , α, λ, ρ).

Consider β : B −→ B ′, morphism in B, with B = (B, ν),
B ′ = (B ′, ν ′) modules over A.

We call β a morphism of modules over A if the diagram

A�B A�B ′

B B ′

ν

A�β

ν′

β

commutes.
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Definition

Let A be a DG algebra.

1 A complex M in DGM (K) is a DG module over A if M is a
module over the monoid A in the monoidal category
DGM (K).

2 Let M and M ′ are DG modules over A. A morphism
β : M −→ M ′ in DGM (K) is a morphism of DG modules
over A if it is morphism of modules over the monoid A in the
monoidal category DGM (K).
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4. The category DGM (A) and the functors −⊗A −,
HomA (−,−)

Let A be a DG algebra.

The DG modules over A and the morphisms of DG mod-
ules over A form a subcategory of DGM (K): denote it by
DGM (A).

The category DGM (A) is a K-category which is complete
and cocomplete.
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4.1 The functor HomA (−,−)

Let M and N be DG modules over a DG algebra A. We have
morphisms of DG algebras

φM : A −→ Hom (M,M) ,

φN : A −→ Hom (N,N) .

Consider the morphisms of complexes

f : Hom (M,N) Hom (Hom (M,M) ,Hom (M,N)) Hom (A,Hom (M,N))
Hom (M,−)M,N Hom

(
φM ,Hom (M,N)

)
,

g : Hom (M,N) Hom (Hom (N,N) ,Hom (M,N)) Hom (A,Hom (M,N))
Hom (−,N)M,N Hom

(
φN ,Hom (M,N)

)
.
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Define HomA (M,N) to be the equaliser of the morphisms f and g .

The functor Hom (−,−) restricts to a functor

HomA (−,−) : DGM (A) op ×DGM (A) −→ DGM (K) .
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4.2 The functor −⊗A −

Let L and M be DG modules over the DG algebras Aop and A,
respectively, with actions

νL : A⊗ L −→ L,

νM : A⊗M −→ M.

Consider the morphisms of complexes

f : A⊗ L⊗M L⊗M
νL ⊗M ,

g : A⊗ L⊗M L⊗ A⊗M L⊗M
γ(A,L) ⊗M L⊗ νM .
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Define L⊗A M to be the factor complex of L⊗M which is the
coequaliser of the morphisms f and g .

The functor −⊗− induces a functor

−⊗A − : DGM (Aop)×DGM (A) −→ DGM (K) .
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Define L⊗A M to be the factor complex of L⊗M which is the
coequaliser of the morphisms f and g .

The functor −⊗− induces a functor

−⊗A − : DGM (Aop)×DGM (A) −→ DGM (K) .
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Let A be a commutative DG algebra.

If L and M are DG modules over A, we may consider the
complex

L⊗A M,

and this is a DG (left and a right) module over A.
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5. The homotopy category H (A)

Let A be a DG algebra and

β : M −→ N

a morphisms of DG modules over A.

Say that β is null homotopic if

β = ∂N ◦ χ+ χ ◦ ∂M ,

for some χ ∈ (HomA (M,N))1.
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The homotopy category of a DG algebra A, denoted by H (A) is
the category defined by:

ObH (A) = ObDGM (A),

MorH(A) (M,N) = MorDGM(A) (M,N) / null homotopy.
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For every β : M −→ N, morphism of DG modules over a DG
algebra A, we may consider a complex

Coneβ =

(
ΣM\ ⊕ N\,

[
∂ΣM 0
Σ (β) ∂N

])
and a short exact sequence

0 N Coneβ ΣM 0.ι π
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The category H (A) is triangulated, with shift functor Σ and
with distinguished triangles the triangles in H (A) isomorphic
(in H (A)!) to

M N Coneβ ΣMf ι π ,

for β morphism in DGM (A).
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6. The derived category D (A)

Given a complex M, one defines Z (M), B (M) and H (M) as usual.

For A DG algebra, the homology defines a functor

H : DGM (A) −→ GM (H (A)) .

A morphism β : M −→ N in DGM (A) such that H (β) is an
isomorphism is called a quasiisomorphism.
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Quasiisomorphisms are well defined in H (A), and the set of
morphsims

{quasiisomorphisms} ⊆ {morphisms in H (A)}

is a multiplicative system in H (A).

So we may localise H (A) with respect to {quasiisomorphisms}.

Then D (A) is this localisation.

D (A) is a Verdier localisation of H (A).
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